Analog Engineer's

Pocket Reference
Art Kay and Tim Green, Editors

THESE MATERIALS ARE PROVIDED "AS IS." TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THESE MATERIALS OR USE OF THESE MATERIALS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING FOR ACCURACY, COMPLETENESS, OR SECURITY. TI DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THESE MATERIALS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY THIRD PARTY CLAIM THAT RELATES TO OR IS BASED ON THESE MATERIALS. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF THESE MATERIALS OR YOUR USE OF THESE MATERIALS.

Analog Engineer's Pocket Reference

Fourth Edition

Edited by:
Art Kay and Tim Green

Special thanks for technical contribution and review:
Kevin Duke
Rafael Ordonez
John Caldwell
Collin Wells
Ian Williams
Thomas Kuehl

Message from the editors:

This pocket reference is intended as a valuable quick guide for often used board- and systemlevel design formulae. This collection of formulae is based on a combined 50 years of analog board- and system-level expertise. Much of the material herein was referred to over the years via a folder stuffed full of printouts. Those worn pages have been organized and the information is now available via this guide in a bound and hard-to-lose format!
Here is a brief overview of the key areas included:

- Key constants and conversions
- Discrete components
- AC and DC analog equations
- Op amp basic configurations
- OP amp bandwidth and stability
- Overview of sensors
- PCB trace R, L, C
- Wire L, R, C
- Binary, hex and decimal formats
- A / D and D / A conversions

We hope you find this collection of formulae as useful as we have. Please send any comments and/or ideas you have for the next edition of the Analog Engineer's Pocket Reference to artkay_timgreen@list.ti.com

Additional resources:

- Browse TI Precision Labs (www.ti.com/precisionlabs), a comprehensive online training curriculum for analog engineers, which applies theory to real-world, hands-on examples.
- Search for complete board-and-system level circuits in the TI Designs - Precision reference design library (www.ti.com/precisiondesigns).
- Read how-to blogs from TI precision analog experts at the Precision Hub (www.ti.com/thehub).
- Find solutions, get help, share knowledge and solve problems with fellow engineers and TI experts in the TI E2E ${ }^{\text {TM }}$ Community (www.ti.com/e2e).

Contents

Conversions $\overline{7}$
Physical constants
9
9
Standard decimal pretixes $-$
Mertric E Conversion
$1{ }^{1}$
Temperature conversions
10
Error cōnversions lpp and percunage
11
Discrete components
12
12
Resistor color code
Resistor color code
3
Standard resistor values
Standard resistor values
14
14
practical capacitor model and specitications
practical capacitor model and specitications 15
Capatitor ty overview
1
1
Standard capacitance alues
17
17
Capacitance marking and tolerance
Capacitance marking and tolerance $18{ }^{1}$
Analog 19
oapacitor equations (series parale eharge energy 20
Inductor equations (series parallel_ energy
Capacitor charge and discharge 23
RMS and mean voltage detintion ${ }^{2} 4$
'RMS and mean voltāge exampTes
27
27
Loogañt 28
29
Logscale
30.
30.
pole and zero definion and exampleds
pole and zero definion and exampleds 34,
'Ámplifier 35
'Bāsicopamp $3 \overline{6}$
OD amp bandwidth 41
Full power bandwidth 421
Small signal step response
43
43
Nōissee equations
48
Phaseemargin
50
Stability open Oop_SPLE-analysis
53^{\prime}
53^{\prime}
instrumentation-Amp filter
55
PCB and wire
56
PCB conductor spacing 57
'Selfheating of PCB traces on insideay
58
 60
Pāckāqe tyōès and dimensions
61
PCB parallel_plate_capacitance
62
62
PCB microstrip capacitance and inductance
63
63
PCB adiacent copper trace capacitance 64
PCB via capacitance and inductance
65
Common coaxial cablespecifications
66
66
'Coaxial cable equations
'Coaxial cable equations 67
Resistan equer lenghtotroiferent ire ty 68
Sensor 69
Temperature sensor overview 70^{1}
Thermistor 1
Resistive temperature deto (RTD)
74
74
Diode temperature characteristics
Diode temperature characteristics
76
76
Tithermocouple (Jand K)
Tithermocouple (Jand K)
81
A/D conversion
83
Binary/hex conversions

907
Quantization-error
911
Signal-to-nose ratio sivp
921
921
Total harmonic distortion (THD)
94
94
Signâl-tō-noise and distortion (S)NAED
94
Effective number bits $\mathbb{Z N O B}$)
955
Noise freeresolution and effective resolution
Settiño tīmeana a coonversion acoucuračy

Conversions

Standard decimal prefixes •
Metric conversions •
Temperature scale conversions •

Table 1: Physical constants

Constant	Symbol	Value	Units
Speed of light in a vacuum	C	2.99792458×10^{8}	$\mathrm{~m} / \mathrm{s}$
Permittivity of vacuum	ε_{0}	$8.854187817620 \times 10^{-12}$	$\mathrm{~F} / \mathrm{m}$
Permeability of free space	μ_{0}	$1.2566370614 \times 10^{-6}$	H / m
Plank's constant	h	$6.62606957 \times 10^{-34}$	$\mathrm{~J} \bullet \mathrm{~s}$
Boltzmann's constant	k	$1.3806488 \times 10^{-23}$	$\mathrm{~J} / \mathrm{K}$
Faraday's constant	F	9.64853399×10^{4}	$\mathrm{C} / \mathrm{mol}$
Avogadro's constant	N_{A}	$6.02214129 \times 10^{23}$	$1 / \mathrm{mol}$
Unified atomic mass unit	m_{u}	$1.660538921 \times 10^{-27}$	kg
Electronic charge	q	$1.602176565 \times 10^{-19}$	C
Rest mass of electron	m_{e}	$9.10938215 \times 10^{-31}$	kg
Mass of proton	m_{p}	$1.672621777 \times 10^{-27}$	kg
Gravitational constant	G	6.67384×10^{-11}	$\mathrm{Nm} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Standard gravity	g_{n}	9.80665	$\mathrm{~m} / \mathrm{s}^{2}$
Ice point	$\mathrm{T}_{\text {ice }}$	273.15	K
Maximum density of water	ρ	1.00×10^{3}	$\mathrm{~kg} / \mathrm{m}^{3}$
Density of mercury $\left(0^{\circ} \mathrm{C}\right)$	ρ_{Hg}	1.3628×10^{4}	$\mathrm{~kg} / \mathrm{m}^{3}$
Gas constant	R	8.3144621	$\mathrm{~J} /(\mathrm{K} \bullet \mathrm{mol})$
Speed of sound in air $\left(a t 273^{\circ} \mathrm{K}\right)$	$C_{\text {air }}$	3.312×10^{2}	$\mathrm{~m} / \mathrm{s}$

Table 2: Standard decimal prefixes

Multiplier	Prefix	Abbreviation
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Table 3: Imperial to metric conversions

Unit	Symbol	Equivalent	Unit	Symbol
inches	in	$25.4 \mathrm{~mm} / \mathrm{in}$	millimeter	mm
mil	mil	$0.0254 \mathrm{~mm} / \mathrm{mil}$	millimeter	mm
feet	ft	$0.3048 \mathrm{~m} / \mathrm{ft}$	meters	m
yards	yd	$0.9144 \mathrm{~m} / \mathrm{yd}$	meters	m
miles	mi	$1.6093 \mathrm{~km} / \mathrm{mi}$	kilometers	km
circular mil	cir mil	$5.067 \times 10^{-4} \mathrm{~mm}^{2} / \mathrm{cir}$ mil	square millimeters	mm^{2}
square yards	yd^{2}	$0.8361 \mathrm{~m}^{2}$	square meters	m^{2}
pints	pt	$0.5682 \mathrm{~L} / \mathrm{pt}$	liters	L
ounces	oz	$28.35 \mathrm{~g} / \mathrm{oz}$	grams	g
pounds	lb	$0.4536 \mathrm{~kg} / \mathrm{lb}$	kilograms	kg
calories	cal	$4.184 \mathrm{~J} / \mathrm{cal}$	joules	J
horsepower	hp	$745.7 \mathrm{~W} / \mathrm{hp}$	watts	W

Table 4: Metric to imperial conversions

Unit	Symbol	Conversion	Unit	Symbol
millimeter	mm	$0.0394 \mathrm{in} / \mathrm{mm}$	inch	in
millimeter	mm	$39.4 \mathrm{mil} / \mathrm{mm}$	mil	mil
meters	m	$3.2808 \mathrm{ft} / \mathrm{m}$	feet	ft
meters	m	$1.0936 \mathrm{yd} / \mathrm{m}$	yard	yd
kilometers	km	$0.6214 \mathrm{mi} / \mathrm{km}^{2}$	miles	mi
square millimeters	mm^{2}	$1974 \mathrm{cir} \mathrm{mil} / \mathrm{mm}^{2}$	circular mil	cir mil
square meters	m^{2}	$1.1960 \mathrm{yd} / \mathrm{m}^{2}$	square yards	yd^{2}
liters	L	$1.7600 \mathrm{pt} / \mathrm{L}$	pints	pt
grams	g	$0.0353 \mathrm{oz} / \mathrm{g}$	ounces	oz
kilograms	kg	$2.2046 \mathrm{lb} / \mathrm{kg}$	pounds	lb
joules	J	$0.239 \mathrm{cal} / \mathrm{J}$	calories	cal
watts	W	$1.341 \times 10^{-3} \mathrm{hp} / \mathrm{W}$	horsepower	hp

Example

Convert 10 mm to mil.
Answer
$10 \mathrm{~mm} \times 39.4 \frac{\mathrm{mil}}{\mathrm{mm}}=394 \mathrm{mil}$

Table 5: Temperature conversions

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) & \text { Fahrenheit to Celsius } \\
{ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 & \text { Celsius to Fahrenheit } \\
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15 & \text { Celsius to Kelvin } \\
{ }^{\circ} \mathrm{C}=\mathrm{K}-273.15 & \text { Kelvin to Celsius }
\end{array}
$$

Table 6: Error conversions

Error(\%) $=\frac{\text { Measured }- \text { Ideal }}{\text { Ideal }} \times 100$	Error in measured value
Error(\% FSR) $=\frac{\text { Measured }- \text { Ideal }}{\text { Full-scale range }} \times 100$	Error in percent of full-scale range
$\%=\frac{\mathrm{ppm}}{10^{6}} \times 100$	Part per million to percent
$\mathrm{m} \%=\frac{\mathrm{ppm}}{10^{6}} \times 100 \times 1000$	Part per million to milli-percent
$\mathrm{ppm}=\% \times 10^{4}$	Percent to part per million
$\mathrm{ppm}=\mathrm{m} \% \times 10$	Milli-percent to part per million

Example

Compute the error for a measured value of 0.12 V when the ideal value is 0.1 V and the range is 5 V .

Answer
Error $(\%)=\frac{0.12 \mathrm{~V}-0.1 \mathrm{~V}}{0.1 \mathrm{~V}} \times 100=20 \% \quad$ Error in measured value
Error $(\% \mathrm{FSR})=\frac{0.12-0.1 \mathrm{~V}}{5 \mathrm{~V}} \times 100=0.4 \% \quad$ Percent FSR

Example

Convert 10 ppm to percent and milli-percent.
Answer

$\frac{10 \mathrm{ppm}}{10^{6}} \times 100=0.001 \%$	Part per million to percent
$\frac{10 \mathrm{ppm}}{10^{6}} \times 100 \times 1000=1 \mathrm{~m} \%$	Part per million to milli-percent

Discrete Components

Resistor color code Standard resistor values •
Capacitance specifications •
Capacitance type overview -
Standard capacitance values •

Table 7: Resistor color code

Color	Digit	Additional Zeros	Tolerance	Temperature Coefficient	Failure Rate
Black	0	0		250	
Brown	1	1	1%	100	1
Red	2	2	2%	50	0.1
Orange	3	3		15	0.01
Yellow	4	4		25	0.001
Green	5	5	0.5%	20	
Blue	6	6	0.25%	10	
Violet	7	7	0.1%	5	
Grey	8	8	0.05%	1	
White	9	9			
Gold	-na-	-1	5%		
Silver	-na-	-2	10%		
No Band	-na-	$-n a-$	20%		

4 Band example: yellow violet orange silver indicate 4, 7, and 3 zeros. i.e. a $47 \mathrm{k} \Omega, 10 \%$ resistor.

Figure 1: Resistor color code

Table 8: Standard resistor values

Practical capacitor model and specifications

Figure 2: Model of a practical capacitor

Table 9: Capacitor specifications

Parameter	Description
C	The nominal value of the capacitance Table 11 lists standard capacitance values
ESR	Equivalent series resistance Ideally this is zero Ceramic capacitors have the best ESR (typically in milliohms). Tantalum Electro- lytic have ESR in the hundreds of milliohms and Aluminum Electrolytic have ESR in the ohms
ESL	Equivalent series inductance Ideally this is zero ESL ranges from 100 pH to 10 nH
Rp	Rp is a parallel leakage resistance (or insulation resistance) Ideally this is infinite This can range from tens of megaohms for some electrolytic capacitors to tens of gigohms for ceramic
Voltage rating	The maximum voltage that can be applied to the capacitor Exceeding this rating damages the capacitor
Voltage	
coefficient	The change in capacitance with applied voltage in ppm/V A high-voltage coefficient can introduce distortion COG capacitors have the lowest coefficient The voltage coefficient is most important in applications that use capacitors in signal processing such as filtering
Temperature	The change in capacitance with across temperature in ppm/ $/{ }^{\circ} \mathrm{C}$ Ideally, the temperature coefficient is zero The maximum specified drift generally ranges from 10 to 100ppm/ ${ }^{\circ} \mathrm{C}$ or greater depending on the capacitor type (See Table 10 for details)

Practical capacitors vs. frequency

Figure 3: Effect of ESR and ESL on capacitor frequency response

Table 10: Capacitor type overview
$\left.\begin{array}{|l|l|}\hline \text { Capacitor type } & \text { Description } \\ \hline \text { COG/NPO } \\ \text { (Type } \mathbf{1} \text { ceramic) } & \begin{array}{l}\text { Use in signal path, filtering, low distortion, audio, and precision } \\ \text { Limited capacitance range: } 0.1 \mathrm{pF} \text { to } 0.47 \mu \mathrm{~F} \\ \text { Lowest temperature coefficient: } \pm 30 \text { ppm } /{ }^{\circ} \mathrm{C}\end{array} \\ \text { Low-voltage coefficient } \\ \text { Minimal piezoelectric effect } \\ \text { Good tolerance: } \pm 1 \% \text { to } \pm 10 \% \\ \text { Temperature range: }-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{C} \text { and higher) }\right. \\ \text { Voltage range may be limited for larger capacitance values }\end{array}\right\}$

Table 11: Standard capacitance table

Standard capacitance table											
1	1.1	1.2	1.3	1.5	1.6	1.8	2	2.2	2.4	2.7	3
3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

Figure 4: Capacitor marking code

Example

Translate the capacitor marking
2 2, $3 \mathrm{~K} \rightarrow " \mathrm{~K} "= \pm 10 \%$
22000 pF
$=22 \mathrm{nF}=0.022 \mu \mathrm{~F}$
Table 12: Ceramic capacitor tolerance markings

Code	Tolerance	Code	Tolerance
B	$\pm 0.1 \mathrm{pF}$	J	$\pm 5 \%$
C	$\pm 0.25 \mathrm{pF}$	K	$\pm 10 \%$
D	$\pm 0.5 \mathrm{pF}$	M	$\pm 20 \%$
F	$\pm 1 \%$	Z	$+80 \%,-20 \%$
G	$\pm 2 \%$		

Table 13: EIA capacitor tolerance markings (Type 2 capacitors)

First letter symbol	Low temp limit	Second number symbol	High temp limit	Second letter symbol	Max. capacitance change over temperature rating
Z	$+10^{\circ} \mathrm{C}$	2	$+45^{\circ} \mathrm{C}$	A	$\pm 1.0 \%$
Y	$-30^{\circ} \mathrm{C}$	4	$+65^{\circ} \mathrm{C}$	B	$\pm 1.5 \%$
X	$-55^{\circ} \mathrm{C}$	5	$+85^{\circ} \mathrm{C}$	C	$\pm 2.2 \%$
		6	$+105^{\circ} \mathrm{C}$	D	$\pm 3.3 \%$
		7	$+125^{\circ} \mathrm{C}$	E	$\pm 4.7 \%$
				F	$\pm 7.5 \%$
				P	$\pm 10.0 \%$
				R	$\pm 15.0 \%$
				S	$\pm 22.0 \%$
				U	$\pm 22 \% \sim 33 \%$
					V

Example
X7R: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \pm 15.0 \%$

Diodes and LEDs

Anode (+)

Anode (+) Long Lead

Cathode (-) Short Lead, Flat

Figure 5: Diode and LED pin names

Color	Wavelength $(\mathbf{n m})$	Voltage (approximate range)
Infrared	$940-850$	1.4 to 1.7
Red	$660-620$	1.7 to 1.9
Orange / Yellow	$620-605$	2 to 2.2
Green	$570-525$	2.1 to 3.0
Blue/White	$470-430$	3.4 to 3.8

Table 14: LED forward voltage drop by color

Note: The voltages given are approximate, and are intended to show the general trend for forward voltage drop of LED diodes. Consult the manufacturer's data sheet for more precise values.

Analog

Capacitor equations (series, parallel, charge, energy) • Inductor equations (series, parallel, energy) •

Capacitor charge and discharge •
RMS and mean voltage definition -
RMS for common signals •
Logarithm laws • dB definitions •
Pole and zero definition with examples •

Capacitor equations

$\mathrm{C}_{\mathrm{t}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\cdots+\frac{1}{\mathrm{C}_{\mathrm{N}}}}$
(1) Series capacitors
$\mathrm{C}_{\mathrm{t}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
(2) Two series capacitors
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\cdots+\mathrm{C}_{\mathrm{N}}$
(3) Parallel capacitors

Where
$\mathrm{C}_{\mathrm{t}}=$ equivalent total capacitance
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \ldots \mathrm{C}_{\mathrm{N}}=$ component capacitors
$\mathrm{Q}=\mathrm{CV}$
(4) Charge storage
$\mathrm{Q}=\mathrm{It}$
(5) Charge defined

Where
Q = charge in coulombs (C)
C = capacitance in farads (F)
$\mathrm{V}=$ voltage in volts (V)
I = current in amps (A)
$\mathrm{t}=$ time in seconds (s)
$\mathrm{i}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}$
(6) Instantaneous current through a capacitor

Where
i = instantaneous current through the capacitor
C = capacitance in farads (F)
$\frac{\mathrm{dv}}{\mathrm{dt}}=$ the instantaneous rate of voltage change
$\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2} \quad$ (7) Energy stored in a capacitor
Where
$E=$ energy stored in an capacitor in Joules (J)
$\mathrm{V}=$ voltage in volts
C = capacitance in farads (F)

Inductor equations

$\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\cdots+\mathrm{L}_{\mathrm{N}}$
(8) Series inductors
$\mathrm{L}_{\mathrm{t}}=\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\cdots+\frac{1}{\mathrm{~L}_{\mathrm{N}}}}$
(9) Parallel inductors
$\mathrm{L}_{\mathrm{t}}=\frac{\mathrm{L}_{1} \mathrm{~L}_{2}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}$
(10) Two parallel inductors

Where
$L_{t}=$ equivalent total inductance
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3} \ldots \mathrm{~L}_{\mathrm{N}}=$ component inductance
$\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
(11) Instantaneous voltage across an inductor

Where
v = instantaneous voltage across the inductor
$\mathrm{L}=$ inductance in Henries (H)
$\frac{\mathrm{di}}{\mathrm{dt}}=$ instantaneous rate of current change
$\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}$
(12) Energy stored in an inductor

Where
E = energy stored in an inductor in Joules (J)
| = current in amps
L = inductance in Henries (H)

Equation for charging an RC circuit

$$
V_{C}=V_{S}\left[1-e^{\left(\frac{-t}{\tau}\right)}\right] \quad \text { (13) General relationship }
$$

Where
$\mathrm{V}_{\mathrm{C}}=$ voltage across the capacitor at any instant in time (t)
$\mathrm{V}_{\mathrm{S}}=$ the source voltage charging the RC circuit
$\mathrm{t}=$ time in seconds
$\tau=\mathrm{RC}$, the time constant for charging and discharging capacitors

Graphing equation 13 produces the capacitor charging curve below. Note that the capacitor is 99.3% charged at five time constants. It is common practice to consider this fully charged.

Percentage charged vs. number of time constants

Figure 6: RC charge curve

Equation for discharging an RC circuit

$$
\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{i}}\left[\mathrm{e}^{\left(\frac{-\mathrm{t}}{\tau}\right)}\right] \quad \text { (14) General Relationship }
$$

Where
$\mathrm{V}_{\mathrm{C}}=$ voltage across the capacitor at any instant in time (t)
$V_{i}=$ the initial voltage of the capacitor at $t=0 \mathrm{~s}$
t = time in seconds
$\tau=\mathrm{RC}$, the time constant for charging and discharging capacitors

Graphing equation 14 produces the capacitor discharge curve below. Note that the capacitor is discharged to 0.7% at five time constants. It is common practice to consider this fully discharged.

Figure 7: RC discharge curve

RMS voltage

$V_{\mathrm{RMS}}=\sqrt{\frac{1}{\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)} \int_{\mathrm{T} 1}^{\mathrm{T} 2}[\mathrm{~V}(\mathrm{t})]^{2} \mathrm{dt}}$
(15) General relationship

Where
$\mathrm{V}(\mathrm{t})=$ continuous function of time
$t=$ time in seconds
$\mathrm{T}_{1} \leq \mathrm{t} \leq \mathrm{T}_{2}=$ the time interval that the function is defined over

Mean voltage

$V_{\text {MEAN }}=\frac{1}{\left(T_{2}-T_{1}\right)} \int_{T 1}^{T 2} V(t) d t$
(16) General relationship

Where
$\mathrm{V}(\mathrm{t})=$ continuous function of time
$t=$ time in seconds
$\mathrm{T}_{1} \leq \mathrm{t} \leq \mathrm{T}_{2}=$ the time interval that the function is defined over

Figure 8: Full wave rectified sine wave

RMS voltage and mean voltage

$V_{\text {RMS }}=V_{\text {PEAK }} \sqrt{\left(\frac{\tau}{2 T}\right)}$
(19) RMS for a half-wave rectified sine wave
$\mathrm{V}_{\text {MEAN }}=\frac{2 \times \mathrm{V}_{\text {PEAK }}}{\pi}\left(\frac{\tau}{\mathrm{T}}\right)$
(20) Mean for a half-wave rectified sine wave

Figure 9: Half-wave rectified sine wave

Figure 10: Square wave

RMS voltage and mean voltage

Figure 11: Trapezoidal wave

Figure 12: Triangle wave

Logarithmic mathematical definitions

$\log \left(\frac{A}{B}\right)=\log (A)-\log (B)$
(27) Log of dividend
$\log (A B)=\log (A)+\log (B)$
(28) Log of product
$\log \left(A^{x}\right)=x \log (A)$
(29) Log of exponent
$\log _{b}(X)=\frac{\log _{a}(X)}{\log _{a}(b)}$
(30) Changing the base of log function
$\log _{2}(X)=\frac{\log _{10}(X)}{\log _{10}(2)}$
(31) Example changing to log base 2
$\ln (X)=\log _{e}(X)$
$e=2.718282$
(33) Exponential function to 6 digits

Alternative notations

$\exp (x)=e^{x}$
$3.54 \mathrm{E}-2=3.54 \times 10^{-2}$
(34) Different notation for exponential function
(35) Different notation for scientific notation, sometimes confused with exponential function

dB definitions

Bode plot basics

The frequency response for the magnitude or gain plot is the change in voltage gain as frequency changes. This change is specified on a Bode plot, a plot of frequency versus voltage gain in dB (decibels). Bode plots are usually plotted as semi-log plots with frequency on the x-axis, log scale, and gain on the y-axis, linear scale. The other half of the frequency response is the phase shift versus frequency and is plotted as frequency versus degrees phase shift. Phase plots are usually plotted as semi-log plots with frequency on the x-axis, log scale, and phase shift on the y-axis, linear scale.

Definitions

Voltage gain $(\mathrm{dB})=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{V_{\text {IN }}}\right)$
(36) Voltage gain in decibels

Power gain (dB) $=10 \log \left(\frac{\mathrm{P}_{\mathrm{OUT}}}{\mathrm{P}_{\mathrm{IN}}}\right)$
(37) Power gain in decibels

Power Measured $(\mathrm{dBm})=10 \log \left(\frac{\text { Power Measured }(\mathrm{W})}{1 \mathrm{~mW}}\right)$
(38) Used for input or output power

$\mathbf{A}(\mathbf{V} / \mathbf{V})$	$\mathbf{A}(\mathbf{d B})$
0.001	-60
0.01	-40
0.1	-20
1	0
10	20
100	40
1,000	60
10,000	80
100,000	100
$1,000,000$	120
$10,000,000$	140

Table 15: Examples of common gain values and dB equivalent

Roll-off rate is the decrease in gain with frequency
Decade is a tenfold increase or decrease in frequency (from 10 Hz to 100 Hz is one decade)
Octave is the doubling or halving of frequency (from 10 Hz to 20 Hz is one octave)

Figure 13 illustrates a method to graphically determine values on a logarithmic axis that are not directly on an axis grid line.

1. Given $L=1 \mathrm{~cm} ; D=2 \mathrm{~cm}$, measured with a ruler.
2. $L / D=\log _{10}\left(f_{p}\right)$
3. $f_{P}=10^{(L / D)}=10^{(1 \mathrm{~cm} / 2 \mathrm{~cm})}=3.16$
4. Adjust for the decade range (for this example, $f_{p}=31.6 \mathrm{~Hz}$)

Figure 13: Finding values on logarithmic axis not directly on a grid line

Bode plots: Poles

Figure 14: Pole gain and phase

Pole Location $=f_{P}$ (cutoff freq)
Magnitude $\left(f<f_{P}\right)=G_{D C}($ for example, 100 dB$)$
Magnitude $\left(f=f_{p}\right)=-3 \mathrm{~dB}$
Magnitude ($f>f_{P}$) $=-20 \mathrm{~dB} /$ decade
Phase $\left(f=f_{p}\right)=-45^{\circ}$
Phase ($0.1 \mathrm{f}_{\mathrm{P}}<\mathrm{f}<10 \mathrm{f}_{\mathrm{P}}$) $=-45^{\circ} /$ decade
Phase ($f>10 f_{P}$) $=-90^{\circ}$
Phase ($f<0.1 \mathrm{f}_{\mathrm{P}}$) $=0^{\circ}$

Pole (equations)

$$
\begin{array}{ll}
G_{V}=\frac{V_{O U T}}{V_{I N}}=\frac{G_{D C}}{j\left(\frac{f}{f_{P}}\right)+1} & \text { (39) As a complex number } \\
G_{V}=\frac{V_{O U T}}{V_{I N}}=\frac{G_{D C}}{\sqrt{\left(\frac{f}{f_{P}}\right)^{2}+1}} & \text { (40) Magnitude } \\
\theta=-\tan ^{-1}\left(\frac{f}{f_{P}}\right) & \text { (41) Phase shift } \\
G_{d B}=20 \log \left(G_{V}\right) & \text { (42) Magnitude in } d B
\end{array}
$$

Where
$\mathrm{G}_{\mathrm{v}}=$ voltage gain in V / V
$G_{d B}=$ voltage gain in decibels
$G_{D C}=$ the dc or low frequency voltage gain
$\mathrm{f}=$ frequency in Hz
$f_{P}=$ frequency at which the pole occurs
$\theta=$ phase shift of the signal from input to output
$j=$ indicates imaginary number or $\sqrt{-1}$

Bode plots (zeros)

Figure 15: Zero gain and phase

Zero location $=\mathrm{f}_{\mathrm{Z}}$
Magnitude $\left(\mathrm{f}<\mathrm{f}_{\mathrm{Z}}\right)=0 \mathrm{~dB}$
Magnitude ($\mathrm{f}=\mathrm{f}_{\mathrm{Z}}$) $=+3 \mathrm{~dB}$
Magnitude ($\mathrm{f}>\mathrm{f}_{\mathrm{Z}}$) $=+20 \mathrm{~dB} /$ decade
Phase ($\mathrm{f}=\mathrm{f}_{\mathrm{Z}}$) $=+45^{\circ}$
Phase ($0.1 \mathrm{f}_{\mathrm{Z}}<\mathrm{f}<10 \mathrm{f}_{\mathrm{Z}}$) $=+45^{\circ} /$ decade
Phase ($\mathrm{f}>10 \mathrm{f} \mathrm{f}$) $=+90^{\circ}$
Phase ($\mathrm{f}<0.1 \mathrm{f}$) $=0^{\circ}$

Zero (equations)

$$
\begin{array}{ll}
G_{V}=\frac{V_{O U T}}{V_{I N}}=G_{D C}\left[j\left(\frac{f}{f_{\mathrm{Z}}}\right)+1\right] & \text { (43) As a complex number } \\
G_{V}=\frac{V_{O U T}}{V_{I N}}=G_{D C} \sqrt{\left(\frac{f}{f_{\mathrm{Z}}}\right)^{2}+1} & \text { (44) Magnitude } \\
\theta=\tan ^{-1}\left(\frac{f}{f_{\mathrm{Z}}}\right) & \text { (45) Phase shift } \\
G_{\mathrm{dB}}=20 \log \left(G_{V}\right) & \text { (46) Magnitude in } \mathrm{dB}
\end{array}
$$

Where
G_{V} = voltage gain in V/V
$\mathrm{G}_{\mathrm{dB}}=$ voltage gain in decibels
$G_{D C}=$ the dc or low frequency voltage gain
$\mathrm{f}=$ frequency in Hz
$f_{Z}=$ frequency at which the zero occurs
$\theta=$ phase shift of the signal from input to output
$j=$ indicates imaginary number or $\sqrt{-1}$

Figure 16: Time to phase shift
$\theta=\frac{\mathrm{T}_{\mathrm{S}}}{\mathrm{T}_{\mathrm{P}}} \cdot 360^{\circ}$
(47) Phase shift from time

Where
$T_{S}=$ time shift from input to output signal
$T_{P}=$ period of signal
$\theta=$ phase shift of the signal from input to output

Example

Calculate the phase shift in degrees for Figure 16.
Answer
$\theta=\frac{\mathrm{T}_{\mathrm{S}}}{\mathrm{T}_{\mathrm{p}}} \cdot 360^{\circ}=\left(\frac{0.225 \mathrm{~ms}}{1 \mathrm{~ms}}\right) \cdot 360^{\circ}=81^{\circ}$

Amplifier

Basic op amp configurations •
Op amp bandwidth •
Full power bandwidth •
Small signal step response •
Noise equations •
Stability equations •
Stability open loop SPICE analysis •

Basic op amp configurations

$\mathrm{G}_{\mathrm{CL}}=1$
(48) Gain for buffer configuration

Figure 17: Buffer configuration
(49) Gain for non-inverting configuration

Figure 18: Non-inverting configuration

Basic op amp configurations (cont.)

$$
\mathrm{G}_{\mathrm{CL}}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}
$$

(50) Gain for inverting configuration

Figure 19: Inverting configuration

Figure 20: Inverting summing configuration

Basic op amp configurations (cont.)

$$
V_{\text {OUT }}=\left(\frac{R_{f}}{R_{\text {in }}}+1\right)\left[\frac{V_{1}}{N}+\frac{V_{2}}{N}+\cdots+\frac{V_{N}}{N}\right]
$$

(53) Transfer function for noninverting summing amplifier for equal input resistors

Where

$\mathrm{R}_{1}=\mathrm{R}_{2}=\ldots=\mathrm{R}_{\mathrm{N}}$
$\mathrm{N}=$ number of input resistors

Figure 21: Non-inverting summing configuration

Simple non-inverting amp with C_{f} filter

$$
\begin{array}{ll}
G_{L F}=\frac{R_{f}}{R_{1}}+1 & \text { (54) Gain for non-inverting configuration for } f<f_{c} \\
G_{H F}=1 & \text { (55) Gain for non-inverting configuration for } f \gg f_{c} \\
f_{C}=\frac{1}{2 \pi R_{f} C_{f}} & \text { (56) Cut off frequency for non-inverting configuration }
\end{array}
$$

Figure 22: Non-inverting amplifier with $\mathbf{C}_{\mathbf{f}}$ filter

Figure 23: Frequency response for non-inverting op amp with $\mathbf{C}_{\mathbf{f}}$ filter ti.com/amplifiers

Simple inverting amp with $\mathbf{C}_{\mathbf{f}}$ filter

$G_{L F}=-\frac{R_{f}}{R_{1}}$
$G_{H F}=-20 \mathrm{~dB} /$ decade after f_{C} until op amp bandwidtl limitation
$f_{C}=\frac{1}{2 \pi R_{f} C_{f}}$
(57) Gain for inverting configuration for $\mathrm{f}<\mathrm{f}_{\mathrm{C}}$
(58) Gain for inverting configuration for $f>f_{C}$
(59) Cutoff frequency for inverting configuration

Figure 24: Inverting amplifier with $\mathbf{C}_{\mathbf{f}}$ filter

Figure 25: Frequency response for inverting op amp with $\mathbf{C}_{\mathbf{f}}$ filter

Op amp bandwidth

$$
\text { GBW = Gain • BW } \quad(60) \text { Gain bandwidth product defined }
$$

Where
GBW = gain bandwidth product, listed in op amp data sheet specification table
Gain = closed loop gain, set by op amp gain configuration
BW = the bandwidth limitation of the amplifier

Example

Determine bandwidth using equation 60
Gain = 100 (from amplifier configuration)
$\mathrm{GBW}=22 \mathrm{MHz}$ (from data sheet)

$$
\mathrm{BW}=\frac{\mathrm{GBW}}{\text { Gain }}=\frac{22 \mathrm{MHz}}{100}=220 \mathrm{kHz}
$$

Note that the same result can be graphically determined using the A_{OL} curve as shown below.

Figure 26: Using AOL to find closed-loop bandwidth

Full power bandwidth

$V_{P}=\frac{S R}{2 \pi f}$
(61) Maximum output without slew-rate induced distortion

Where

$V_{P}=$ maximum peak output voltage before slew induced distortion occurs $\mathrm{SR}=$ slew rate
$\mathrm{f}=$ frequency of applied signal

Figure 27: Maximum output without slew-rate induced distortion

Notice that the above figure is graphed using equation 61 for the OPA277. The example calculation shows the peak voltage for the OPA277 at 40 kHz . This can be determined graphically or with the equation.

Example

$\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{SR}}{2 \pi f}=\frac{0.8 \mathrm{~V} / \mu \mathrm{s}}{2 \pi(40 \mathrm{kHz})}=3.18 \mathrm{Vpk}$ or 6.37 Vpp

Small signal step response

$\tau_{R}=\frac{0.35}{f_{C}}$
(62) Rise time for a small signal step

Where
$\tau_{\mathrm{R}}=$ the rise time of a small signal step response
$\mathrm{f}_{\mathrm{C}}=$ the closed-loop bandwidth of the op amp circuit

Small signal step response waveform

Figure 28: Maximum output without slew-rate induced distortion

Op amp noise model

Figure 29: Op amp noise model

Op amp intrinsic noise includes:

- Noise caused by op amp (current noise + voltage noise)
- Resistor noise

Noise bandwidth calculation

$B W_{N}=K_{N} f_{C}$
(63) Noise bandwidth

Where
$\mathrm{BW}_{\mathrm{N}}=$ noise bandwidth of the system
$\mathrm{K}_{\mathrm{N}}=$ the brick wall correction factor for different filter order
$f_{C}=-3 d B$ bandwidth of the system

Figure 30: Op amp bandwidth for three different filters orders

Table 16: Brick wall correction factors for noise bandwidth

Number of poles	KN brick wall correction factor
1	1.57
2	1.22
3	1.13
4	1.12

Broadband total noise calculation

$E_{N}=e_{B B} \sqrt{B_{N}} \quad$ (64) Total rms noise from broadband

Where
$\mathrm{E}_{\mathrm{N}}=$ total rms noise from broadband noise
$\mathrm{e}_{\mathrm{BB}}=$ broadband noise spectral density $(\mathrm{nV} / \mathrm{rtHz})$
$\mathrm{BW}_{\mathrm{N}}=$ noise bandwidth (Hz)

1/f total noise calculation

$\mathrm{E}_{\mathrm{N} \text { _NORMAL }}=\mathrm{e}_{\mathrm{BF}} \sqrt{\mathrm{f}_{\mathrm{O}}}$
(65) Normalized 1/f noise at 1 Hz

Where
$\mathrm{E}_{\text {N_NORMAL }}=1 / \mathrm{f}$ noise normalized to 1 Hz
$e_{B F}=$ noise spectral density measured in the $1 / f$ region
$f_{O}=$ the frequency that the $1 / f$ noise $e_{B F}$ is measured at

$$
\mathrm{E}_{\mathrm{N}_{-} \text {FLICKER }}=\mathrm{E}_{\mathrm{N}_{-} \text {NORMAL }} \sqrt{\ln \left(\frac{\mathrm{f}_{\mathrm{H}}}{\mathrm{f}_{\mathrm{L}}}\right)} \quad \text { (66) } 1 / \mathrm{f} \text { total noise calculation }
$$

Where
$\mathrm{E}_{\text {N_FLICKER }}=$ total rms noise from flicker
$\mathrm{E}_{\text {N_NORMAL }}=1 / \mathrm{f}$ noise normalized to 1 Hz
$\mathrm{f}_{\mathrm{H}}=$ upper cutoff frequency or noise bandwidth
$f_{L}=$ lower cutoff frequency, normally set to 0.1 Hz

Table 17: Peak-to-peak conversion

Number of standard deviations	Percent chance reading is in range
2σ (same as $\pm 1 \sigma$)	68.3%
3σ (same as $\pm 1.5 \sigma$)	86.6%
4σ (same as $\pm 2 \sigma$)	95.4%
5σ (same as $\pm 2.5 \sigma$)	98.8%
6σ (same as $\pm 3 \sigma$)	99.7%
6.6σ (same as $\pm 3.3 \sigma$)	99.9%

Thermal noise calculation

```
En_R}=\sqrt{}{4kTR\Deltaf
en_R}=\sqrt{}{4kTR
```

(67) Total rms Thermal Noise
(68) Thermal Noise Spectral Density

```
Where
\(\mathrm{E}_{\mathrm{n} \_\mathrm{R}}=\) Total rms noise from resistance, also called thermal noise (V rms)
\(e_{n_{\_} R}=\) Noise spectral density from resistance, also called thermal noise \((V / \sqrt{\mathrm{Hz}})\)
\(\mathrm{k}=\) Boltzmann's constant \(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\)
\(\mathrm{T}=\) Temperature in Kelvin
\(\Delta f=\) Noise bandwidth in Hz
```


Figure 31: Noise spectral density vs. resistance

Ac response versus frequency (Dominant 2-Pole System)

Figure 32 illustrates a bode plot with four different examples of ac peaking.

Figure 32: Stability - ac peaking relationship example

Phase margin versus ac peaking

This graph illustrates the phase margin for any given level of ac peaking. Note that 45° of phase margin or greater is required for stable operation.

Figure 33: Stability - phase margin vs. peaking for a two-pole system

Transient overshoot (Dominant 2-Pole System)

Figure 34 illustrates a transient response with two different examples of percentage overshoot.

Figure 34: Stability - transient overshoot example

Phase margin versus percentage overshoot

This graph illustrates the phase margin for any given level of transient overshoot. Note that 45° of phase margin or greater is required for stable operation.

Figure 35: Stability - phase margin vs. percentage overshoot

Figure 36: Common spice test circuit used for stability
$A_{\text {OL_LOADED }}=\frac{V_{0}}{V_{F B}}$
(69) Loaded open-loop gain
$\beta=\mathrm{V}_{\mathrm{FB}}$
(70) Feedback factor
$\frac{1}{\beta}=\frac{1}{\mathrm{~V}_{\mathrm{FB}}}$
(71) Closed-loop noise gain
$\mathrm{A}_{\text {OL_LOADED }} \times \beta=\mathrm{V}_{\mathrm{O}}$
(72) Loop gain

Where
$\mathrm{V}_{\mathrm{O}}=$ the voltage at the output of the op amp.
$\mathrm{V}_{\text {OUT }}=$ the voltage output delivered to the load, which may be important to the application but is not considered in stability analysis.
$V_{F B}=$ feedback voltage
$R_{F}, R_{1}, R_{i s o}$ and $C_{L}=$ the op amp feedback network and load.
Other op amp topologies will have different feedback networks;
however, the test circuit will be the same for most cases.
Figure 37 shows the exception to the rule (multiple feedback).
C_{1} and L_{1} are components that facilitate SPICE analysis. They are large
(1TF, 1TH) to make the circuit closed-loop for dc, but open loop for ac frequencies. SPICE requires closed-loop operation at dc for convergence.

Figure 37: Alternative (multiple feedback) SPICE test circuit used for stability
$\mathrm{A}_{\text {OL_LOADED }}=\mathrm{V}_{\mathrm{O}}$
(73) Loaded open loop gain
$\beta=\frac{V_{\mathrm{FB}}}{\mathrm{V}_{\mathrm{O}}}$
(74) Feedback factor
$\frac{1}{\beta}=\frac{V_{0}}{V_{\mathrm{FB}}}$
(75) Closed-loop noise gain
$\mathrm{A}_{\text {OL_LOADED }} \times \beta=\mathrm{V}_{\mathrm{FB}}$
(76) Loop gain

Where
$\mathrm{V}_{\mathrm{O}}=$ the voltage at the output of the op amp.
$\mathrm{V}_{\text {OUT }}=$ the voltage output delivered to the load. This may be important to the application but is not considered in stability analysis.
$V_{F B}=$ feedback voltage
$R_{F}, R_{1}, R_{\text {iso }}$ and $C_{F}=$ the op amp feedback network. Because there are two paths for feedback, the loop is broken at the input.
C_{1} and L_{1} are components that facilitate SPICE analysis. They are large (1TF, 1TH) to make the circuit closed loop for dc, but open loop for ac frequencies. SPICE requires closed-loop operation at dc for convergence.
$\mathrm{C}_{\mathrm{IN}}=$ the equivalent input capacitance taken from the op amp datasheet. This capacitance normally does not need to be added because the model includes it. However, when using this simulation method the capacitance is isolated by the 1 TH inductor.

Figure 38: Transient real world stability test

Test tips

- Choose test frequency $\ll \mathrm{f}_{\mathrm{cl}}$
- Small signal (Vpp $\leq 50 \mathrm{mV}$) ac output square wave (for example, 1 kHz)
- Adjust V_{IN} amplitude to yield output $\leq 50 \mathrm{mVpp}$
- Worst cases is usually when $\mathrm{V}_{\text {offset }}=0$ (Largest R_{O}, for $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}$).
- Use $\mathrm{V}_{\text {offset }}$ as desired to check all output operating points for stability
- Set scope = ac couple and expand vertical scope scale to look for amount of overshoot, undershoot, and ringing on $\mathrm{V}_{\text {OUT }}$
- Use 1x attenuation scope probe on $\mathrm{V}_{\text {OUt }}$ for best resolution

Figure 39: Input filter for instrumentation amplifier

Select $C_{\text {DIF }} \geq 10 C_{C M 1}$
(77) Differential filter is sized 10 times the common-mode filter
$\mathrm{R}_{\mathrm{IN} 1}=\mathrm{R}_{\mathrm{IN} 2}$
(78) Input resistors must be equal
$\mathrm{C}_{\mathrm{CM} 1}=\mathrm{C}_{\mathrm{CM} 2}$
$\mathrm{f}_{\mathrm{CM}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{IN} 1} \mathrm{C}_{\mathrm{CM} 1}}$
(79) Common-mode capacitors must be equal
(80) Differential filter cutoff
$f_{\text {DIF }}=\frac{1}{2 \pi\left(2 R_{\text {IN } 1}\right)\left(C_{D I F}+\frac{1}{2} C_{C M 1}\right)}$

Where
$\mathrm{f}_{\text {DIF }}=$ differential cutoff frequency
$\mathrm{f}_{\mathrm{CM}}=$ common-mode cutoff frequency
$\mathrm{R}_{\mathrm{IN}}=$ input resistance
$\mathrm{C}_{\mathrm{CM}}=$ common-mode filter capacitance
$\mathrm{C}_{\text {DIF }}=$ differential filter capacitance

Note: Selecting $C_{\text {DIF }} \geq 10 C_{C M}$ sets the differential mode cutoff frequency 10 times lower than the common-mode cutoff frequency. This prevents common-mode noise from being converted into differential noise due to component tolerances.
Amplifier

Notes

PCB and Wire

PCB trace resistance for $10 z$ and $20 z \mathrm{Cu} \bullet$ Conductor spacing in a PCB for safe operation • Current carrying capacity of copper conductors •

Package types and dimensions •
PCB trace capacitance and inductance -
PCB via capacitance and inductance •
Common coaxial cable specifications •
Coaxial cable equations •
Resistance per length for wire types •
Maximum current for wire types •

Table 18: Printed circuit board conductor spacing

Voltage between conductors (dc or ac peaks)	Minimum spacing						
	Bare board				Assembly		
	B1	B2	B3	B4	A5	A6	A7
0-15	$\begin{gathered} 0.05 \mathrm{~mm} \\ {[0.00197 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.05 \mathrm{~mm} \\ {[0.00197 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$
16-30	$\begin{gathered} 0.05 \mathrm{~mm} \\ {[0.00197 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.05 \mathrm{~mm} \\ {[0.00197 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.25 \mathrm{~mm} \\ {[0.00984 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$
31-50	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	0.6 mm [0.024 in]	0.6 mm [0.024 in]	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	0.4 mm [0.016 in]	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$
51-100	$\begin{gathered} 0.1 \mathrm{~mm} \\ {[0.0039 \mathrm{in}]} \end{gathered}$	0.6 mm [0.024 in]	$\begin{gathered} 1.5 \mathrm{~mm} \\ {[0.0591 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$	0.5 mm [0.020 in]	$\begin{gathered} 0.13 \mathrm{~mm} \\ {[0.00512 \mathrm{in}]} \end{gathered}$
101-150	$\begin{gathered} 0.2 \mathrm{~mm} \\ {[0.0079 \mathrm{in}]} \end{gathered}$	0.6 mm [0.024 in]	$\begin{gathered} 3.2 \mathrm{~mm} \\ {[0.126 \mathrm{in}]} \end{gathered}$	0.4 mm [0.016 in]	0.4 mm [0.016 in]	0.8 mm [0.031 in]	0.4 mm [0.016 in]
151-170	$\begin{gathered} 0.2 \mathrm{~mm} \\ {[0.0079 \mathrm{in}]} \end{gathered}$	1.25 mm [0.0492 in]	$\begin{gathered} 3.2 \mathrm{~mm} \\ {[0.126 \mathrm{in}]} \end{gathered}$	0.4 mm [0.016 in]	0.4 mm [0.016 in]	0.8 mm [0.031 in]	0.4 mm [0.016 in]
171-250	$\begin{gathered} 0.2 \mathrm{~mm} \\ {[0.0079 \mathrm{in}]} \end{gathered}$	1.25 mm [0.0492 in]	6.4 mm [0.252 in]	0.4 mm [0.016 in]	0.4 mm [0.016 in]	0.8 mm [0.031 in]	0.4 mm [0.016 in]
251-300	$\begin{gathered} 0.2 \mathrm{~mm} \\ {[0.0079 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 1.25 \mathrm{~mm} \\ {[0.0492 \mathrm{in}]} \end{gathered}$	$\begin{aligned} & 12.5 \mathrm{~mm} \\ & {[0.492 \mathrm{in}]} \end{aligned}$	0.4 mm [0.016 in]	0.4 mm [0.016 in]	0.8 mm [0.031 in]	0.8 mm [0.031 in]
$301-500$	$\begin{gathered} 0.25 \mathrm{~mm} \\ {[0.00984 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mm} \\ {[0.0984 \mathrm{in}]} \end{gathered}$	12.5 mm [0.492 in]	0.8 mm [0.031 in]	0.8 mm [0.031 in]	$\begin{gathered} 1.5 \mathrm{~mm} \\ {[0.0591 \mathrm{in}]} \end{gathered}$	0.8 mm [0.031 in]

B1 Internal conductors
B2 External conductors uncoated sea level to 3050 m
B3 External conductors uncoated above 3050m
B4 External conductors coated with permanent polymer coating (any elevation)
A5 External conductors with conformal coating over assembly (any elevation)
A6 External component lead/termination, uncoated, sea level to 3050 m
A7 External component lead termination, with conformal coating (any elevation)

Extracted with permission from IPC-2221B, Table 6-1.
For additional information, the entire specification can be downloaded at www.ipc.org

Figure 40: Self heating of PCB traces on inside layer

Example

Find the current that will cause a $20^{\circ} \mathrm{C}$ temperature rise in a PCB trace that is 0.1 inch wide and uses $2 \mathrm{oz} / \mathrm{ft}^{2}$ copper. (Assume traces on outside of PCB.)

Answer

First translate 0.1 inch to 250 sq. mils. using bottom chart. Next find the current associated with $10^{\circ} \mathrm{C}$ and 250 sq. mils. using top chart (Answer = 5A).
Extracted with permission from IPC-2152, Figure 5-1.
For additional information the entire specification can
be downloaded at www.ipc.org

PCB trace resistance for $1 \mathrm{oz}-\mathrm{Cu}$

Figure 41: PCB trace resistance vs. length and width for $1 \mathrm{oz}-\mathrm{Cu}, \mathbf{2 5}^{\circ} \mathrm{C}$

Figure 42: PCB trace resistance vs. length and width for $1 \mathrm{oz}-\mathrm{Cu}, 125^{\circ} \mathrm{C}$

Example

What is the resistance of a 20 mil long, 5 mil wide trace for a 1 oz-Cu thickness at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$?
Answer
R25C $=2 \mathrm{~m} \Omega$, R125C $=3 \mathrm{~m} \Omega$. The points are circled on the curves.

PCB trace resistance for $\mathbf{2}$ oz-Cu

Figure 43: PCB trace resistance vs. length and width for $2 \mathrm{oz}-\mathrm{Cu}, \mathbf{2 5}^{\circ} \mathrm{C}$

Figure 44: PCB trace resistance vs. length and width for $2 \mathrm{oz}-\mathrm{Cu}, 125^{\circ} \mathrm{C}$

Example

What is the resistance of a 200 mil long, 25 mil wide trace for a 2 oz-Cu thickness at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$?
Answer
R25C $=2 \mathrm{~m} \Omega$, R125C $=3 \mathrm{~m} \Omega$. The points are circled on
the curves.

Common package type and dimensions

PCB parallel plate capacitance

$$
\mathrm{C}(\mathrm{pF})=\frac{\mathrm{k} \cdot \ell \cdot \mathrm{w} \cdot \varepsilon_{\mathrm{r}}}{h} \quad \text { (82) Capacitance for parallel copper planes }
$$

Where
$\mathrm{k}=$ Permittivity of free space.
Both the metric and imperial version of the constant are given.

$$
\mathrm{k}=8.854 \cdot 10^{-3} \mathrm{pF} / \mathrm{mm} \text {, or } 2.247 \cdot 10^{-4} \mathrm{pF} / \mathrm{mil}
$$

$\ell=$ length (metric in mm, or imperial in mil)
$\mathrm{w}=$ width (metric in mm , or imperial in mil)
$\mathrm{h}=$ separation between planes (metric in mm , or imperial in mil)
$\varepsilon_{r}=\mathrm{PCB}$ relative dielectric constant $\left(\varepsilon_{r} \approx 4.5\right.$ for FR-4)

Figure 45: PCB parallel plate capacitance

Example Calculate the total capacitance for $\ell=5.08 \mathrm{~mm}$, $\mathrm{w}=12.7 \mathrm{~mm}, \mathrm{~h}=1.575 \mathrm{~mm}, \varepsilon_{\mathrm{r}}=4.5$
$\mathrm{C}(\mathrm{pF})=\frac{\left(8.854 \cdot 10^{-3} \mathrm{pF} / \mathrm{mm}\right) \cdot(5.08 \mathrm{~mm}) \cdot(12.7 \mathrm{~mm}) \cdot(4.5)}{1.575 \mathrm{~mm}}=1.63 \mathrm{pF}$

Example Calculate the total capacitance for $\ell=200 \mathrm{mil}$,

$$
\mathrm{w}=500 \mathrm{mil}, \mathrm{~h}=62 \mathrm{mil}, \varepsilon_{r}=4.5
$$

$\mathrm{C}(\mathrm{pF})=\frac{\left(2.247 \cdot 10^{-4} \mathrm{pF} / \mathrm{mil}\right) \cdot(200 \mathrm{mil}) \cdot(500 \mathrm{mil}) \cdot(4.5)}{62 \mathrm{mil}}=1.63 \mathrm{pF}$

Microstrip capacitance and inductance

$\mathrm{L}(\mathrm{nH})=\mathrm{k}_{\mathrm{L}} \cdot \ell \cdot \ln \left(\frac{5.98 \cdot \mathrm{~h}}{0.8 \cdot \mathrm{w}+\mathrm{t}}\right)$
$\mathrm{C}(\mathrm{pF})=\frac{\text { (83) Inductance for microstrip }}{\ln \left(\frac{5.98 \cdot \mathrm{~h}}{0.8 \cdot \mathrm{w}+\mathrm{t}}\right)} \quad$

Where
$\mathrm{k}_{\mathrm{L}}=\mathrm{PCB}$ inductance per unit length.
Both the metric and imperial version of the constant are given.
$\mathrm{k}_{\mathrm{L}}=2 \mathrm{nH} / \mathrm{cm}$, or $5.071 \mathrm{nH} / \mathrm{in}$
$\mathrm{k}_{\mathrm{C}}=\mathrm{PCB}$ capacitance per unit length.
Both the metric and imperial version of the constant are given.
$\mathrm{k}_{\mathrm{C}}=0.264 \mathrm{pF} / \mathrm{cm}$, or $0.67056 \mathrm{pF} / \mathrm{in}$
$\ell=$ length of microstrip (metric in cm , or imperial in inches)
$\mathrm{w}=$ width of microstrip (metric in mm, or imperial in mil)
$\mathrm{t}=$ thickness of copper (metric in mm , or imperial in mil)
$\mathrm{h}=$ separation between planes (metric in mm, or imperial in mil)
$\varepsilon_{r}=$ relative permittivity, approximately 4.5 for FR-4 PCB

For imperial:
Copper thickness (mils) $=$ 1.37 • (number of ounces)
i.e. $1 \mathrm{oz} \mathrm{Cu}=1.37 \mathrm{mils}$
i.e. $1 / 2 \mathrm{Oz} \mathrm{Cu}=0.684$ mils

Figure 46: PCB Microstrip capacitance and inductance

Example

Calculate the total inductance and capacitance for $\ell=2.54 \mathrm{~cm}, \mathrm{w}=0.254 \mathrm{~mm}$, $\mathrm{t}=0.0356 \mathrm{~mm}, \mathrm{~h}=0.8 \mathrm{~mm}, \varepsilon_{\mathrm{r}}=4.5$ for $\mathrm{FR}-4$

$$
\begin{aligned}
& \mathrm{L}(\mathrm{pF})=(2 \mathrm{nH} / \mathrm{cm}) \cdot(2.54 \mathrm{~cm}) \cdot \ln \left(\frac{5.98 \cdot 0.8 \mathrm{~mm}}{0.8 \cdot 0.254 \mathrm{~mm}+0.0356 \mathrm{~mm}}\right)=15.2 \mathrm{nH} \\
& \mathrm{C}(\mathrm{pF})=\frac{(0.264 \mathrm{pF} / \mathrm{cm}) \cdot(2.54 \mathrm{~cm})(4.5+1.41)}{\ln \left(\frac{5.98 \cdot 0.8 \mathrm{~mm}}{0.8 \cdot 0.254 \mathrm{~mm}+0.0356 \mathrm{~mm}}\right)}=1.3 \mathrm{pF}
\end{aligned}
$$

Example Calculate the total inductance and capacitance for $\ell=1 \mathrm{in}, \mathrm{w}=10 \mathrm{mil}$, $\mathrm{t}=1.4 \mathrm{mil}, \mathrm{h}=31.5 \mathrm{mil}, \varepsilon_{r}=4.5$ for FR-4
$\mathrm{L}=15.2 \mathrm{nH}, \mathrm{C}=1.3 \mathrm{pF}$. Note: this is the same problem as above with imperial units

Adjacent copper traces

For imperial:
Copper thickness (mils) $=$ 1.37 • (number of ounces)
i.e. $1 \mathrm{oz} \mathrm{Cu}=1.37 \mathrm{mils}$
i.e. $1 / 2 \mathrm{Oz} \mathrm{Cu}=0.684 \mathrm{mils}$

Figure 47: Capacitance for adjacent copper traces

Example: Calculate the total capacitance for both cases: $\ell=2.54 \mathrm{~mm}$, $\mathrm{t}=0.0348 \mathrm{~mm}, \mathrm{~d}=0.254 \mathrm{~mm}, \mathrm{w}=0.635 \mathrm{~mm}, \mathrm{~h}=1.6 \mathrm{~mm}, \varepsilon_{\mathrm{r}}=4.5$ for FR-4

$$
\mathrm{C}(\mathrm{pF}) \approx \frac{\left(8.854 \cdot 10^{-3} \mathrm{pF} / \mathrm{mm}\right)(0.0348 \mathrm{~mm})(2.54 \mathrm{~mm})}{0.254 \mathrm{~mm}}=0.0031 \mathrm{pF} \text { Same }
$$

$$
\mathrm{C}(\mathrm{pF}) \approx \frac{\left(8.854 \cdot 10^{-3} \mathrm{pF} / \mathrm{mm}\right)(4.5 \mathrm{~mm})(0.635 \mathrm{~mm})(2.54 \mathrm{~mm})}{1.6 \mathrm{~mm}}=\begin{gathered}
\begin{array}{l}
\text { Adjacent } \\
\text { layers }
\end{array} \\
0.04 \mathrm{pF} \\
\text { lay }
\end{gathered}
$$

Example: Calculate the total capacitance for both cases: $\ell=100 \mathrm{mil}$, $\mathrm{t}=1.37 \mathrm{mil}, \mathrm{d}=10 \mathrm{mil}, \mathrm{w}=25 \mathrm{mil}, \mathrm{h}=63 \mathrm{mil}, \varepsilon_{\mathrm{r}}=4.5$ for FR-4
$\mathrm{C}=0.0031 \mathrm{pF}$ (Same layer), $\mathrm{C}=0.4 \mathrm{pF}$ (Adjacent layers). Note: this is the same problem as above with imperial units.

$$
\begin{aligned}
& \mathrm{C}(\mathrm{pF}) \approx \frac{\mathrm{k} \cdot \mathrm{t} \cdot \ell}{\mathrm{~d}} \\
& \text { (85) Same layer } \\
& \mathrm{C}(\mathrm{pF}) \approx \frac{\mathrm{k} \cdot \varepsilon_{\mathrm{r}} \cdot \mathrm{w} \cdot \ell}{\mathrm{~h}} \\
& \text { (86) Different layers } \\
& \ell=\text { length of the copper trace (mil, or mm) } \\
& \mathrm{k}=8.854^{*} 10^{-3} \mathrm{pF} / \mathrm{mm} \text {, or } \mathrm{k}=2.247^{*} 10^{-4} \mathrm{pF} / \mathrm{mil} \\
& \mathrm{t}=\text { thickness of trace (in mil, or mm) } \\
& \mathrm{d}=\text { distance between traces if on same layer (mil, or mm) } \\
& \mathrm{w}=\text { width of trace. (mil, or mm) } \\
& \mathrm{h}=\text { separation between planes. (mil, or mm) } \\
& \varepsilon_{\mathrm{r}}=\mathrm{PCB} \text { dielectric constant }\left(\varepsilon_{\mathrm{r}}=4.5\right. \text { for FR-4) }
\end{aligned}
$$

PCB via capacitance and inductance

$\mathrm{L}(\mathrm{nH}) \approx \mathrm{k}_{\mathrm{L}} \cdot \mathrm{h}\left[1+\ln \left(\frac{4 \mathrm{~h}}{\mathrm{~d}}\right)\right]$	(87) Inductance for via
$\mathrm{C}(\mathrm{pF}) \approx \frac{\mathrm{k}_{\mathrm{C}} \cdot \varepsilon_{\mathrm{r}} \cdot \mathrm{h} \cdot \mathrm{d}_{1}}{\mathrm{~d}_{2}-\mathrm{d}_{1}}$	(88) Capacitance for via

Where
$k_{L}=P C B$ inductance per unit length.
Both the metric and imperial version of the constant are given.
$\mathrm{k}_{\mathrm{L}}=0.2 \mathrm{nH} / \mathrm{mm}$, or $5.076 \cdot 10^{-3} \mathrm{nH} / \mathrm{mil}$
$\mathrm{k}_{\mathrm{C}}=\mathrm{PCB}$ capacitance per unit length.
Both the metric and imperial version of the constant are given.
$\mathrm{k}_{\mathrm{C}}=0.0555 \mathrm{pF} / \mathrm{mm}$, or $1.41 \cdot 10^{-3} \mathrm{pF} / \mathrm{mil}$
$\mathrm{h}=$ separation between planes
$d=$ diameter of via hole
$\mathrm{d}_{1}=$ diameter of the pad surrounding the via
$d_{2}=$ distance to inner layer ground plane.
$\varepsilon_{r}=$ PCB dielectric constant $\left(\varepsilon_{r}=4.5\right.$ for FR-4)

Figure 48: Inductance and capacitance of via
Example: Calculate the total inductance and capacitance for $\mathrm{h}=1.6 \mathrm{~mm}$, $\mathrm{d}=0.4 \mathrm{~mm}, \mathrm{~d}_{1}=0.8 \mathrm{~mm}, \mathrm{~d}_{2}=1.5 \mathrm{~mm}$
$\mathrm{L}(\mathrm{nH}) \approx(0.2 \mathrm{nH} / \mathrm{mm}) \cdot(1.6 \mathrm{~mm})\left[1+\ln \left(\frac{4 \cdot 1.6 \mathrm{~mm}}{0.4 \mathrm{~mm}}\right)\right]=1.2 \mathrm{nH}$
$\mathrm{C}(\mathrm{pF}) \approx \frac{(0.0555 \mathrm{pF} / \mathrm{mm}) \cdot(4.5) \cdot(1.6 \mathrm{~mm}) \cdot(0.8 \mathrm{~mm})}{1.5 \mathrm{~mm}-0.8 \mathrm{~mm}}=0.46 \mathrm{pF}$
Example: Calculate the total inductance and capacitance for $h=63$ mil, $\mathrm{d}=15.8 \mathrm{mil}, \mathrm{d}_{1}=31.5 \mathrm{mil}, \mathrm{d}_{2}=59 \mathrm{mil}$
$\mathrm{L}=1.2 \mathrm{nH}, \mathrm{C}=0.46 \mathrm{pF}$. Note: this is the same problem as above with imperial units.

Table 19: Coaxial cable information

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |

Coaxial cable equations

$\frac{C}{\ell}=\frac{2 \pi \varepsilon}{\ln \left(\frac{D}{d}\right)}$
$\frac{\mathrm{L}}{\ell}=\frac{\mu}{2 \pi} \ln \left(\frac{\mathrm{D}}{\mathrm{d}}\right)$
$Z_{o}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=\frac{1}{2 \pi} \sqrt{\frac{\mu}{\varepsilon}}$
(91) Characteristic impedance

Where
$\mathrm{L}=$ inductance in henries (H)
C = capacitance in farads (F)
Z = impedance in ohms (Ω)
d = diameter of inner conductor
$\mathrm{D}=$ inside diameter of shield, or diameter of dielectric insulator
$\varepsilon=$ dielectric constant of insulator $\left(\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}\right)$
$\mu=$ magnetic permeability ($\mu=\mu_{\mathrm{r}} \mu_{\mathrm{o}}$)
$\ell=$ length of the cable

Figure 49: Coaxial cable cutaway

Table 20: Resistance per length for different wire types (AWG)

AWG	Stds	Outside diameter		Area		dc resistance	
		in	$\mathbf{m m}$	circular mils	$\mathbf{m m}^{\mathbf{2}}$	$\Omega / \mathbf{1 0 0 0} \mathbf{f t}$	$\Omega / \mathbf{k m}$
36	Solid	0.005	0.127	25	0.013	445	1460
36	$7 / 44$	0.006	0.152	28	0.014	371	1271
34	Solid	0.0063	0.160	39.7	0.020	280	918
34	$7 / 42$	0.0075	0.192	43.8	0.022	237	777
32	Solid	0.008	0.203	67.3	0.032	174	571
32	$7 / 40$	0.008	0.203	67.3	0.034	164	538
30	Solid	0.010	0.254	100	0.051	113	365
30	$7 / 38$	0.012	0.305	112	0.057	103	339
28	Solid	0.013	0.330	159	0.080	70.8	232
28	$7 / 36$	0.015	0.381	175	0.090	64.9	213
26	Solid	0.016	0.409	256	0.128	43.6	143
26	$10 / 36$	0.021	0.533	250	0.128	41.5	137
24	Solid	0.020	0.511	404	0.205	27.3	89.4
24	$7 / 32$	0.024	0.610	448	0.229	23.3	76.4
22	Solid	0.025	0.643	640	0.324	16.8	55.3
22	$7 / 30$	0.030	0.762	700	0.357	14.7	48.4
20	Solid	0.032	0.813	1020	0.519	10.5	34.6
20	$7 / 28$	0.038	0.965	1111	0.562	10.3	33.8
18	Solid	0.040	1.020	1620	0.823	6.6	21.8
18	$7 / 26$	0.048	1.219	1770	0.902	5.9	19.2
16	Solid	0.051	1.290	2580	1.310	4.2	13.7
16	$7 / 24$	0.060	1.524	2828	1.442	3.7	12.0
14	Solid	0.064	1.630	4110	2.080	2.6	8.6
14	$7 / 22$	0.073	1.854	4480	2.285	2.3	7.6

Table 21: Maximum current vs. AWG

			들 를 흘 를 농 응	$\begin{aligned} & \text { Kynar } \\ & \text { Polyethylene } \\ & \text { Thermoplastic at } 125^{\circ} \mathrm{C} \end{aligned}$	
AWG	$\boldsymbol{I m a x}(\mathrm{A})$	$\boldsymbol{I m a x}(\mathrm{A})$	$\boldsymbol{I m a x}(A)$	$\operatorname{Imax}(A)$	$\boldsymbol{I m a x}(\mathrm{A})$
30	2	3	3	3	4
28	3	4	4	5	6
26	4	5	5	6	7
24	6	7	7	8	10
22	8	9	10	11	13
20	10	12	13	14	17
18	15	17	18	20	24
16	19	22	24	26	32
14	27	30	33	40	45
12	36	40	45	50	55
10	47	55	58	70	75

Note: Wire is in free air at $25^{\circ} \mathrm{C}$

Example

What is the maximum current that can be applied to a 30 gauge Teflon wire in a room temperature environment?
What will the self-heating be?

Answer

$I \max =4 \mathrm{~A}$
Wire temperature $=200^{\circ} \mathrm{C}$

Sensor

Thermistor •
Resistive temperature detector (RTD) •
Diode temperature characteristics•
Thermocouple (J and K) •

Table 22: Temperature sensor overview

	Thermistor	RTD	Diode	Thermocouple
Temp range	$-55^{\circ} \mathrm{C}<\mathrm{T}<150^{\circ} \mathrm{C}$	$-200^{\circ} \mathrm{C}<\mathrm{T}<850^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}<\mathrm{T}<150^{\circ} \mathrm{C}$	$-250^{\circ} \mathrm{C}<\mathrm{T}<1800^{\circ} \mathrm{C}$
Cost	Low	High	Low	Low
Accuracy	Good accuracy at one temperature Less accurate over full range	Excellent accuracy	Poor accuracy without calibration	Good accuracy with polynomial correction
Linearity	Very nonlinear. Follows reciprocal lof logarithmic function	Fairly linear Nonlinearity < 4.5\% of full scale Relatively simple quadratic function	Fairly linear Slope $\approx-2 \mathrm{mV} / \mathrm{C}$ Slope varies according to current excitation, diode type, and diode processing	Fairly linear Nonlinearity < 10\% of full scale Complex 10th order polynomial
Construction	Less rugged	Depends on Type (can be rugged)	Rugged	Most rugged
Output range	$\begin{aligned} & \text { Typically } 10 \text { s to } 100 \mathrm{~s} \text { of } \mathrm{k} \Omega \\ & \text { full scale } \\ & \text { Very wide variation in resistance } \end{aligned}$	$\begin{aligned} & 18 \text { to } 390 \Omega \text { for PT100 } \\ & 180 \text { to } 3.9 \text { k for PT1000 } \end{aligned}$	0.4 to 0.8 V	10s of millivolts
Applications	General purpose	Scientific and industrial	Low cost temperature monitor Low cost linear response	Industrial temperature measurement
General	Requires excitation	Requires excitation	Requires excitation	Self-powered Requires cold junction comp

Thermistor: Resistance to temperature, Steinhart-Hart equation

$$
\frac{1}{\mathrm{~T}}=\mathrm{a}+\mathrm{b} \ln (\mathrm{R})+\mathrm{c}(\ln (\mathrm{R}))^{3} \quad(92) \text { Convert resistance to temperature for a thermistor }
$$

Where
T = temperature in Kelvin
a, b, c = Steinhart-Hart equation constants
$R=$ resistance in ohms

Thermistor: Temperature to resistance, Steinhart-Hart equation

$$
\begin{array}{ll}
R=\exp \left[\left(y-\frac{x}{2}\right)^{\frac{1}{3}}-\left(y+\frac{x}{2}\right)^{\frac{1}{3}}\right] & \begin{array}{r}
\text { (93) Convert temperature to resis } \\
\text { for a thermistor }
\end{array} \\
x=\frac{a-\frac{1}{T}}{c} & \text { (94) Factor used in Equation } 93 \\
y=\sqrt{\left(\frac{b}{3 c}\right)^{3}+\frac{x^{2}}{4}} & \text { (95) Factor used in Equation } 93
\end{array}
$$

Where
$\mathrm{R}=$ resistance in Ω
$\mathrm{T}=$ temperature in Kelvin
a, b, c = Steinhart-Hart equation constants
$x, y=$ Steinhart-Hart factors used in temperature to resistance equation

RTD equation temperature to resistance

$R_{r t d}=R_{0}\left[1+A_{0} T+B_{0} T^{2}+C_{0}(T-100) \mathrm{T}^{3}\right]$
(96) RTD resistance for $\mathrm{T}<0^{\circ} \mathrm{C}$
$R_{r t d}=R_{0}\left[1+A_{0} T+B_{0} T^{2}\right]$
(97) RTD resistance for $\mathrm{T}>0^{\circ} \mathrm{C}$

Where
$R_{\text {rtd }}=$ resistance of RTD over temperature range of $\left(-200^{\circ} \mathrm{C}<\mathrm{T}<850^{\circ} \mathrm{C}\right)$
$R_{0}=100 \Omega$ for PT-100, 1000Ω for PT-1000
$\mathrm{A}_{0}, \mathrm{~B}_{0}, \mathrm{C}_{0}=$ Callendar-Van Dusen coefficients
$\mathrm{T}=$ temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$

RTD equation resistance to temperature ($\mathrm{T}>0^{\circ} \mathrm{C}$)

$T=\frac{-A_{0}+\sqrt{A_{0}{ }^{2}-4 B_{0}\left(1-\frac{R_{R T D}}{R_{0}}\right)}}{2 B_{0}} \quad$ (98) RTD resistance for $T>0^{\circ} \mathrm{C}$

Where
$R_{\text {RTD }}=$ resistance of RTD over temperature range of $\left(-200^{\circ} \mathrm{C}<\mathrm{T}<850^{\circ} \mathrm{C}\right)$
$R_{0}=100 \Omega$
$\mathrm{A}_{0}, \mathrm{~B}_{0}, \mathrm{C}_{0}=$ Callendar-Van Dusen coefficients
$\mathrm{T}=$ temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$

Table 23: Callendar-Van Dusen coefficients for different RTD standards

IEC-751 DIN 43760 BS 1904 ASTM-E1137 EN-60751	JISC 1604	US Industrial Standard D-100 American	US Industrial Standard American	ITS-90	
A_{0}	$+3.9083 \mathrm{E}-3$	$+3.9739 \mathrm{E}-3$	$+3.9787 \mathrm{E}-3$	$+3.9692 \mathrm{E}-3$	$+3.9888 \mathrm{E}-3$
$\mathrm{~B}_{0}$	$-5.775 \mathrm{E}-7$	$-5.870 \mathrm{E}-7$	$-5.8686 \mathrm{E}-7$	$-5.8495 \mathrm{E}-7$	$-5.915 \mathrm{E}-7$
C_{0}	$-4.183 \mathrm{E}-12$	$-4.4 \mathrm{E}-12$	$-4.167 \mathrm{E}-12$	$-4.233 \mathrm{E}-12$	$-3.85 \mathrm{E}-12$

Example

What is the temperature given an ITS-90 PT100 resistance of 120Ω ?
Answer

$$
\mathrm{T}=\frac{-\left(3.9888 \cdot 10^{-3}\right)+\sqrt{\left(3.9888 \cdot 10^{-3}\right)^{2}-4\left(-5.915 \cdot 10^{-7}\right)\left(1-\frac{120}{100}\right)}}{2\left(-5.915 \cdot 10^{-7}\right)}=50.5^{\circ} \mathrm{C}
$$

RTD equation resistance to temperature $\left(\mathrm{T}<0^{\circ} \mathrm{C}\right)$

$\mathrm{T}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \alpha_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{rtd}}\right)^{\mathrm{i}} \quad$ (99) RTD resistance for $\mathrm{T}<0^{\circ} \mathrm{C}$

Where
$\mathrm{T}=$ temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$
$R_{\text {RTD }}=$ resistance of RTD over temperature range of $\left(\mathrm{T}<0^{\circ} \mathrm{C}\right)$
$\alpha_{i}=$ polynomial coefficients for converting RTD resistance to temperature for $\mathrm{T}<0^{\circ} \mathrm{C}$

Table 24: Coefficients for 5th order RTD resistance to temperature

	IEC-751 DIN 43760 BS 1904 ASTM-E1137 EN-60751	JISC 1604			
$\boldsymbol{\alpha}_{0}$	$-2.4202 \mathrm{E}+02$	$-2.3820 \mathrm{E}+02$	$-2.3818 \mathrm{E}+02$	$-2.3864 \mathrm{E}+02$	$-2.3791 \mathrm{E}+02$
$\boldsymbol{\alpha}_{1}$	$2.2228 \mathrm{E}+00$	$2.1898 \mathrm{E}+00$	$2.1956 \mathrm{E}+00$	$2.1973 \mathrm{E}+00$	$2.2011 \mathrm{E}+00$
$\boldsymbol{\alpha}_{2}$	$2.5857 \mathrm{E}-03$	$2.5226 \mathrm{E}-03$	$2.4413 \mathrm{E}-03$	$2.4802 \mathrm{E}-03$	$2.3223 \mathrm{E}-03$
$\boldsymbol{\alpha}_{3}$	$-4.8266 \mathrm{E}-06$	$-4.7825 \mathrm{E}-06$	$-4.7517 \mathrm{E}-06$	$-4.7791 \mathrm{E}-06$	$-4.6280 \mathrm{E}-06$
$\boldsymbol{\alpha}_{4}$	$-2.8152 \mathrm{E}-08$	$-2.7009 \mathrm{E}-08$	$-2.3831 \mathrm{E}-08$	$-2.5157 \mathrm{E}-08$	$-1.9702 \mathrm{E}-08$
$\boldsymbol{\alpha}_{5}$	$1.5224 \mathrm{E}-10$	$1.4719 \mathrm{E}-10$	$1.3492 \mathrm{E}-10$	$1.4020 \mathrm{E}-10$	$1.1831 \mathrm{E}-10$

Example

Find the temperature given an ITS-90 PT100 resistance of 60Ω.
Answer

```
\(\mathrm{T}=(-2.3791 \mathrm{E}+02) \cdot(60)^{0}+(2.2011 \mathrm{E}+00) \cdot(60)^{1}+(2.3223 \mathrm{E}-03) \cdot(60)^{2}+\cdots\)
    \(+(2.3223 \mathrm{E}-03) \cdot(60)^{5}=-98.6^{\circ} \mathrm{C}\)
```


Diode equation vs. temperature

$$
\mathrm{V}_{\mathrm{D}}=\frac{\mathrm{nkT}}{\mathrm{q}} \ln \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{S}}}+1\right) \approx \frac{\mathrm{nkT}}{\mathrm{q}} \ln \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{S}}}\right)
$$

(100) Diode voltage

Where
$\mathrm{V}_{\mathrm{D}}=$ diode voltage vs. temperature and current
$\mathrm{n}=$ diode ideality factor (ranges from 1 to 2)
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$, Boltzmann's constant
$\mathrm{T}=$ temperature in Kelvin
$\mathrm{q}=1.60 \times 10^{-19} \mathrm{C}$, charge of an electron
I = forward diode current in amps
$I_{S}=$ saturation current

$$
\mathrm{I}_{\mathrm{S}}=\alpha \mathrm{T}^{(3 / \mathrm{n})} \exp \left(-\frac{\mathrm{qV}_{\mathrm{G}}}{\mathrm{nkT}}\right)
$$

(101) Saturation current

Where
$I_{S}=$ saturation current
$\alpha=$ constant related to the cross sectional area of the junction
$\mathrm{V}_{\mathrm{G}}=$ diode voltage vs. temperature and current
$\mathrm{n}=$ diode ideality factor (ranges from 1 to 2)
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$, Boltzmann's constant
$\mathrm{T}=$ temperature in Kelvin
$\mathrm{q}=1.60 \times 10^{-19} \mathrm{C}$, charge of an electron

Diode voltage versus temperature

Figure 50 shows an example of the temperature drift for a diode.
Depending on the characteristics of the diode and the forward current the slope and offset of this curve will change. However, typical diode drift is about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. A forward drop of about 0.6 V is typical for room temperature.

Figure 50: Diode voltage drop vs. temperature

Type J thermocouples translating temperature to voltage (ITS-90 standard)

$\mathrm{V}_{\mathrm{t}}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}(\mathrm{T})^{\mathrm{i}}$
(102) Thermoelectric voltage

Where
$\mathrm{V}_{\mathrm{T}}=$ thermoelectric voltage
$\mathrm{T}=$ temperature in degrees Celsius
$c_{i}=$ translation coefficients

Table 25: Type J thermocouple temperature to voltage coefficients

	Type J thermocouple temperature to voltage	
	$-219^{\circ} \mathbf{C}$ to $\mathbf{7 6 0} \mathbf{}{ }^{\circ} \mathbf{C}$	$\mathbf{7 6 0}{ }^{\circ} \mathbf{C}$ to $\mathbf{1 , 2 0 0}{ }^{\circ} \mathbf{C}$
$\mathbf{c}_{\mathbf{0}}$	$0.0000000000 \mathrm{E}+00$	$2.9645625681 \mathrm{E}+05$
$\mathbf{c}_{\mathbf{1}}$	$5.0381187815 \mathrm{E}+01$	$-1.4976127786 \mathrm{E}+03$
$\mathbf{c}_{\mathbf{2}}$	$3.0475836930 \mathrm{E}-02$	$3.1787103924 \mathrm{E}+00$
$\mathbf{c}_{\mathbf{3}}$	$-8.5681065720 \mathrm{E}-05$	$-3.1847686701 \mathrm{E}-03$
$\mathbf{c}_{\mathbf{4}}$	$1.3228195295 \mathrm{E}-07$	$1.5720819004 \mathrm{E}-06$
$\mathbf{c}_{\mathbf{5}}$	$-1.7052958337 \mathrm{E}-10$	$-3.0691369056 \mathrm{E}-10$
$\mathbf{c}_{\mathbf{6}}$	$2.0948090697 \mathrm{E}-13$	-
$\mathbf{c}_{\mathbf{7}}$	$-1.2538395336 \mathrm{E}-16$	-
$\mathbf{c}_{\mathbf{8}}$	$1.5631725697 \mathrm{E}-20$	-

Type J thermocouples translating voltage to temperature (ITS-90 standard)
$\mathrm{T}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{t}}\right)^{\mathrm{i}}$
(103) Temperature

Table 26: Type J thermocouple voltage to temperature coefficients

Type \mathbf{J} thermocouple temperature to voltage			
	$\mathbf{- 2 1 9}{ }^{\circ} \mathbf{C}$ to $\mathbf{0}^{\circ} \mathbf{C}$	$\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{7 6 0}{ }^{\circ} \mathbf{C}$	$\mathbf{7 6 0}{ }^{\circ} \mathbf{C}$ to $\mathbf{1 , 2 0 0}{ }^{\circ} \mathbf{C}$
$\mathbf{c}_{\mathbf{0}}$	$0.000000000 \mathrm{E}+00$	$0.000000000 \mathrm{E}+00$	$-3.113581870 \mathrm{E}+03$
$\mathbf{c}_{\mathbf{1}}$	$1.952826800 \mathrm{E}-02$	$1.978425000 \mathrm{E}-02$	$3.005436840 \mathrm{E}-01$
$\mathbf{c}_{\mathbf{2}}$	$-1.228618500 \mathrm{E}-06$	$-2.001204000 \mathrm{E}-07$	$-9.947732300 \mathrm{E}-06$
$\mathbf{c}_{\mathbf{3}}$	$-1.075217800 \mathrm{E}-09$	$1.036969000 \mathrm{E}-11$	$1.702766300 \mathrm{E}-10$
$\mathbf{c}_{\mathbf{4}}$	$-5.908693300 \mathrm{E}-13$	$-2.549687000 \mathrm{E}-16$	$-1.430334680 \mathrm{E}-15$
$\mathbf{c}_{\mathbf{5}}$	$-1.725671300 \mathrm{E}-16$	$3.585153000 \mathrm{E}-21$	$4.738860840 \mathrm{E}-21$
$\mathbf{c}_{\mathbf{6}}$	$-2.813151300 \mathrm{E}-20$	$-5.344285000 \mathrm{E}-26$	-
$\mathbf{c}_{\mathbf{7}}$	$-2.396337000 \mathrm{E}-24$	$5.099890000 \mathrm{E}-31$	-
$\mathbf{c}_{\mathbf{8}}$	$-8.382332100 \mathrm{E}-29$	-	-

Type K thermocouples translating temperature to voltage (ITS-90 standard)

$\mathrm{V}_{\mathrm{T}}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}(\mathrm{T})^{\mathrm{i}}$
(104) Thermoelectric voltage for $\mathrm{T}<0^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{t}}=\left[\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}(\mathrm{T})^{\mathrm{i}}\right]+\alpha_{0} \mathrm{e}^{\left[\alpha_{1}(\mathrm{~T}-126.9686)\right]^{2}}$
(105) Thermoelectric voltage for $\mathrm{T}>0^{\circ} \mathrm{C}$

Where
$\mathrm{V}_{\mathrm{T}}=$ thermoelectric voltage
$\mathrm{T}=$ temperature in degrees Celsius
$c_{i}=$ translation coefficients
$\alpha_{0}, \alpha_{1}=$ translation coefficients

Table 27: Type K thermocouple temperature to voltage coefficients

	$-219{ }^{\circ} \mathrm{C}$ to $760^{\circ} \mathrm{C}$	$760^{\circ} \mathrm{C}$ to $\mathbf{1 , 2 0 0}{ }^{\circ} \mathrm{C}$
C_{0}	$0.0000000000 \mathrm{E}+00$	-1.7600413686E+01
C_{1}	$3.9450128025 \mathrm{E}+01$	$3.8921204975 \mathrm{E}+01$
C_{2}	$2.3622373598 \mathrm{E}-02$	1.8558770032E-02
C3	-3.2858906784E-04	-9.9457592874E-05
C_{4}	-4.9904828777E-06	$3.1840945719 \mathrm{E}-07$
C_{5}	-6.7509059173E-08	-5.6072844889E-10
C_{6}	-5.7410327428E-10	$5.6075059059 \mathrm{E}-13$
C_{7}	-3.1088872894E-12	-3.2020720003E-16
C_{8}	-1.0451609365E-14	$9.7151147152 \mathrm{E}-20$
C9	-1.9889266878E-17	-1.2104721275E-23
C_{10}	-1.6322697486E-20	-
α_{0}	-	1.1859760000E+02
a_{1}	-	-1.1834320000E-04

Type K thermocouples translating voltage to temperature (ITS-90 standard)

$$
\mathrm{T}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{t}}\right)^{\mathrm{i}} \quad \text { (106) Temperature }
$$

Table 28: Type K thermocouple voltage to temperature coefficients

	$-219^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $760^{\circ} \mathrm{C}$	$760^{\circ} \mathrm{C}$ to $1,200^{\circ} \mathrm{C}$
C_{0}	$0.0000000 \mathrm{E}+00$	0.0000000E+00	-1.3180580E+02
C_{1}	$2.5173462 \mathrm{E}-02$	$2.5083550 \mathrm{E}-02$	$4.8302220 \mathrm{E}-02$
C_{2}	-1.1662878E-06	$7.8601060 \mathrm{E}-08$	-1.6460310E-06
C_{3}	-1.0833638E-09	-2.5031310E-10	$5.4647310 \mathrm{E}-11$
C_{4}	-8.9773540E-13	$8.3152700 \mathrm{E}-14$	-9.6507150E-16
C_{5}	-3.7342377E-16	-1.2280340E-17	$8.8021930 \mathrm{E}-21$
C_{6}	-8.6632643E-20	$9.8040360 \mathrm{E}-22$	-3.1108100E-26
C_{7}	-1.0450598E-23	-4.4130300E-26	-
C_{8}	-5.1920577E-28	$1.0577340 \mathrm{E}-30$	-
C9	-	-1.0527550E-35	-

Table 29: Seebeck coefficients for different material

Material	Seebeck coefficient	Material	Seebeck coefficient	Material	Seebeck coefficient
Aluminum	4	Gold	6.5	Rhodium	6
Antimony	47	Iron	19	Selenium	900
Bismuth	-72	Lead	4	Silicon	440
Cadmium	7.5	Mercury	0.6	Silver	6.5
Carbon	3	Nichrome	25	Sodium	-2.0
Constantan	-35	Nickel	-15	Tantalum	4.5
Copper	6.5	Platinum	0	Tellurium	500
Germanium	300	Potassium	-9.0	Tungsten	7.5

Note: Units are $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$. All data at temperature of $0^{\circ} \mathrm{C}$

A/D conversion

> Binary/hex conversions • A/D and D/A transfer function • Quantization error Signal-to-noise ratio (SNR) Signal-to-noise and distortion (SINAD) Total harmonic distortion (THD) Effective number of bits (ENOB)

Numbering systems: Binary, decimal, and hexadecimal

Binary (Base-2)	0							1						
Decimal (Base-10)	0	1	2	2	3	4		5	6	5	7	8		9
Hexadecimal (Base-16)	011	2	3	4	56	7	8	9	A	B	C	D		F

Example conversion: Binary to decimal

Binary

$8+4+0+1$

Decimal

Example conversion: Decimal to binary

Decimal

Binary

$$
128+64+32+8+4=236
$$

LSD = Least Significant Digit MSD = Most Significant Digit

Example conversion: Binary to hexadecimal

Example Conversion: Hexadecimal to decimal and decimal to hexadecimal

Decimal (Base-10)
Hexadecimal (Base-16)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Hexadecimal

Decimal

$2(4096)+6(256)+10(16)+16(1)=9903$

LSD = Least Significant Digit
MSD = Most Significant Digit

Figure 51: ADC full-scale range (FSR) unipolar

Full Scale Range (FSR) Unipolar
$F S R=\frac{V_{\text {REF }}}{\text { PGA }}$
$1 \mathrm{LSB}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}$
Example calculation for the circuit above.
$\mathrm{FSR}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{PGA}}=\frac{5 \mathrm{~V}}{2}=2.5 \mathrm{~V}$
$1 \mathrm{LSB}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}=\frac{2.5 \mathrm{~V}}{2^{12}}=610.35 \mu \mathrm{~V}$

Figure 52: ADC full-scale range (FSR) Bipolar

Full Scale Range (FSR) Bipolar
$F S R=\frac{V_{\text {REF }}}{P G A}$
$1 \mathrm{LSB}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}$

Example calculation for the circuit above.
FSR $=\frac{ \pm V_{\text {REF }}}{\text { PGA }}=\frac{ \pm 2.5 \mathrm{~V}}{2}= \pm 1.25 \mathrm{~V} \Rightarrow 2.5 \mathrm{~V}$
$1 \mathrm{LSB}=\frac{\mathrm{FSR}}{2^{\mathrm{n}}}=\frac{2.5 \mathrm{~V}}{2^{12}}=610.35 \mu \mathrm{~V}$

Table 30: Different data formats

Gode	Straight binary	Offset binary	2's complement
Binary	Decimal value	Decimal value	Decimal value
11111111	255	127	-1
11000000	192	64	-64
10000000	128	0	-128
01111111	127	-1	127
01000000	64	-64	64
00000000	0	-128	0

Converting two's complement to decimal:
Negative number example

Final result $\longrightarrow-(4+1)=-5$

Converting two's complement to decimal:
Positive number example

Final result $\longrightarrow 4+1=5$

Table 31: LSB voltage vs. resolution and reference voltage

		FSR (Full-Scale Range)			
		1.024V	1.25V	2.048 V	2.5 V
	8	4 mV	4.88 mV	8 mV	9.76 mV
	10	1 mV	1.22 mV	2 mV	2.44 mV
	12	$250 \mu \mathrm{~V}$	$305 \mu \mathrm{~V}$	$500 \mu \mathrm{~V}$	$610 \mu \mathrm{~V}$
	14	$52.5 \mu \mathrm{~V}$	$76.3 \mu \mathrm{~V}$	$125 \mu \mathrm{~V}$	$152.5 \mu \mathrm{~V}$
	16	$15.6 \mu \mathrm{~V}$	$19.1 \mu \mathrm{~V}$	$31.2 \mu \mathrm{~V}$	$38.14 \mu \mathrm{~V}$
	18	$3.91 \mu \mathrm{~V}$	4.77 HV	$7.81 \mu \mathrm{~V}$	$9.53 \mu \mathrm{~V}$
	20	$0.98 \mu \mathrm{~V}$	$1.19 \mu \mathrm{~V}$	$1.95 \mu \mathrm{~V}$	$2.384 \mu \mathrm{~V}$
	22	244 nV	299 nV	488 nV	596 nV
	24	61 nV	74.5 nV	122 nV	149 nV

Table 32: LSB voltage vs. resolution and reference voltage

		FSR (Full-Scale Range)			
		3 V	3.3 V	4.096 V	5 V
$\begin{aligned} & \text { 흘 } \\ & \text { 兰 } \\ & \hline \ddot{0} \\ & \text { 区x } \end{aligned}$	8	11.7 mV	12.9 mV	16 mV	19.5 mV
	10	2.93 mV	3.222 mV	4 mV	4.882 mV
	12	$732 \mu \mathrm{~V}$	$806 \mu \mathrm{~V}$	1 mV	1.221 mV
	14	$183 \mu \mathrm{~V}$	$201 \mu \mathrm{~V}$	$250 \mu \mathrm{~V}$	$305 \mu \mathrm{~V}$
	16	45.77 $\mu \mathrm{V}$	$50.35 \mu \mathrm{~V}$	$62.5 \mu \mathrm{~V}$	$76.29 \mu \mathrm{~V}$
	18	$11.44 \mu \mathrm{~V}$	$12.58 \mu \mathrm{~V}$	$15.6 \mu \mathrm{~V}$	$19.07 \mu \mathrm{~V}$
	20	$2.861 \mu \mathrm{~V}$	$3.147 \mu \mathrm{~V}$	$3.91 \mu \mathrm{~V}$	$4.768 \mu \mathrm{~V}$
	22	715 nV	787 nV	976 nV	$1.192 \mu \mathrm{~V}$
	24	179 nV	196 nV	244 nV	298 nV

DAC definitions

Resolution $=\mathrm{n}$	The number of bits used to quantify the output
Number of Codes $=2^{\mathrm{n}}$	The number of input code combinations
Full-Scale Range output $=$ FSR	Sets the converter output range and the LSB voltage
LSB $=$ FSR $/ 2^{n}$	The voltage step size of each LSB
Full-scale output voltage $=\left(2^{n}-1\right) \bullet 1$ LSB	Full-scale output voltage of the DAC
Full-scale input code $=2^{n}-1$	Largest code that can be written
Transfer Function:Vout $=$ Number of Codes $\bullet\left(F S R / 2^{n}\right)$	Relationship between output voltage and input code

Figure 53: DAC transfer function

ADC definitions

Resolution $=\mathrm{n}$	The number of bits used to quantify the input
Number of Codes $=2^{n}$	The number of output code combinations
Full-Scale Range input $=$ FSR	Sets the converter input range and the LSB voltage
LSB $=$ FSR $/ 2^{n}$	The voltage step size of each LSB
Full-scale input voltage $=\left(2^{n}-1\right) \bullet 1$ LSB	Full-scale input voltage of the ADC
Full-scale output code $=2^{n}-1$	Largest code that can be read
Transfer Function: Number of Codes $=\operatorname{Vin} /\left(F S R / 2^{n}\right)$	Relationship between input voltage and output code

Figure 54: ADC transfer function

Quantization error of ADC

Quantization error

Figure 55: Quantization error of an A/D converter

Quantization error

The error introduced as a result of the quantization process. The amount of this error is a function of the resolution of the converter. The quantization error of an A/D converter is $1 / 2$ LSB. The quantization error signal is the difference between the actual voltage applied and the ADC output (Figure 55). The rms of the quantization signal is $1 \mathrm{LSB} / \sqrt{12}$

Signal-to-noise ratio (SNR) from quantization noise only

MaxRMSSignal $=\frac{\mathrm{FSR} / 2}{\sqrt{2}}=\frac{1 \mathrm{LSB} \times 2^{\mathrm{N}-1}}{\sqrt{2}}$
RMSNoise $=\frac{1 \text { LSB }}{\sqrt{12}}$ from quantization only
SNR $=\frac{\text { MaxRMSSignal }}{\text { RMSNoise }}=\frac{1 \mathrm{LSB} \times 2^{\mathrm{N}-1} / \sqrt{2}}{1 \mathrm{LSB} / \sqrt{12}}=2^{\mathrm{N}-1} \sqrt{6}$
$\operatorname{SNR}(\mathrm{dB})=20 \log (\mathrm{SNR})=[20 \log (2)] \mathrm{N}+20 \log \left(\frac{\sqrt{6}}{2}\right)$
$\operatorname{SNR}(\mathrm{dB}) \approx 6.02 \mathrm{~N}+1.76$

Where
FSR = full-scale range of the A/D converter
$1 \mathrm{LSB}=$ the voltage of $1 \mathrm{LSB}, \mathrm{V}_{\mathrm{REF}} / 2^{\mathrm{n}}$
$\mathrm{N}=$ the resolution of the A/D converter
MaxRMSSignal = the rms equivalent of the ADC's full-scale input
RMSNoise $=$ the rms noise from quantization
SNR $=$ the ratio of rms signal to rms noise

Example

What is the SNR for an 8-bit A/D converter with 5 V reference, assuming only quantization noise?

Answer

SNR $=2^{N-1} \sqrt{6}=2^{8-1} \sqrt{6}=314$
SNR $(\mathrm{dB})=20 \log (314)=49.9 \mathrm{~dB}$
$\operatorname{SNR}(\mathrm{dB})=6.02(8)+1.76=49.9 \mathrm{~dB}$

Total harmonic distortion (Vrms)

$$
\begin{align*}
\operatorname{THD}(\%) & =\left(\frac{\text { RMSDistortion }}{\text { MaxRMSSignal }}\right) \cdot 100=\frac{\sqrt{\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\cdots+\mathrm{V}_{\mathrm{n}}{ }^{2}}}{\mathrm{~V}_{1}} \cdot 100 \tag{112}\\
\operatorname{THD}(\mathrm{~dB}) & =20 \log \left(\frac{\text { RMSDistortion }}{\text { MaxRMSSignal }}\right) \tag{113}
\end{align*}
$$

Where

THD = total harmonic distortion, the ratio of the rms distortion to the rms signal
RMSDistortion = the rms sum of all harmonic components
MaxRMSSignal $=$ the rms value of the input signal
$\mathrm{V}_{1}=$ the fundamental, generally the input signal
$\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \ldots \mathrm{~V}_{\mathrm{n}}=$ harmonics of the fundamental

Figure 56: Fundamental and harmonics in Vrms

Total harmonic distortion (dBc)

$\operatorname{THD}(\mathrm{dBc})=10 \log \left[10^{\left(\frac{\mathrm{D}_{2}}{10}\right)}+10^{\left(\frac{\mathrm{D}_{3}}{10}\right)}+10^{\left(\frac{\mathrm{D}_{4}}{10}\right)}+\cdots+10^{\left(\frac{\mathrm{D}_{\mathrm{n}}}{10}\right)}\right]$

Where
THD = total harmonic distortion. The ratio of the rms distortion to the rms signal
$D_{1}=$ the fundamental, generally the input signal. This is normalized to 0 dBc
$D_{2}, D_{3}, D_{4}, \ldots D_{n}=$ harmonics of the fundamental measured relative to the fundamental

Figure 57: Fundamental and harmonics in dBc

Example

Determine THD for the example above.

$\mathrm{THD}(\mathrm{dBc})=-74.76 \mathrm{~dB}$

Ac signals

Signal-to-noise and distortion (SINAD) and effective number of bits (ENOB)

$$
\begin{equation*}
\operatorname{SINAD}(\mathrm{dB})=20 \log \left(\frac{\text { MaxRMSSignal }}{\sqrt{\text { RMSNoise }^{2}+\text { RMSDistortion }^{2}}}\right) \tag{115}
\end{equation*}
$$

$\operatorname{SINAD}(\mathrm{dB})=-20 \log \left(\sqrt{10\left(\frac{-\mathrm{SNR}(\mathrm{dB})}{10}\right)}+10^{\left(\frac{\mathrm{THD}(\mathrm{dB})}{10}\right)}\right)$
$\mathrm{ENOB}=\frac{\operatorname{SINAD}(\mathrm{dB})-1.76 \mathrm{~dB}}{6.02}$

Where
MaxRMSSignal $=$ the rms equivalent of the ADC's full-scale input
RMSNoise $=$ the rms noise integrated across the A/D converters
RMSDistortion $=$ the rms sum of all harmonic components
SINAD = the ratio of the full-scale signal-to-noise ratio and distortion
THD = total harmonic distortion. The ratio of the rms distortion to the rms signal.
SNR = the ratio of rms signal to rms noise

Example

Calculate the SNR, THD, SINAD and ENOB given the following information:
MaxRMSSignal $=1.76 \mathrm{Vrms}$
RMSDistortion $=50 \mu \mathrm{Vrms}$
RMSNoise $=100 \mu \mathrm{Vrms}$
Answer

$$
\begin{aligned}
& \operatorname{SNR}(\mathrm{dB})=20 \log \left(\frac{1.76 \mathrm{Vrms}}{100 \mu \mathrm{Vrms}}\right)=84.9 \mathrm{~dB} \\
& \operatorname{THD}(\mathrm{~dB})=20 \log \left(\frac{50 \mu \mathrm{Vrms}}{1.76 \mathrm{Vrms}}\right)=-90.9 \mathrm{~dB} \\
& \operatorname{SINAD}(\mathrm{~dB})=20 \log \left(\frac{1.76 \mathrm{~V} \mathrm{rms}}{\sqrt{(100 \mu \mathrm{Vrms})^{2}+(50 \mu \mathrm{Vrms})^{2}}}\right)=83.9 \mathrm{~dB} \\
& \operatorname{SINAD}(\mathrm{~dB})=-20 \log \left(\sqrt{10\left(\frac{-83.9 \mathrm{~dB}}{10}\right)+10\left(\frac{-90.9 \mathrm{~dB}}{10}\right)}\right)=83.9 \mathrm{~dB} \\
& \mathrm{ENOB}=\frac{83.9 \mathrm{~dB}-1.76 \mathrm{~dB}}{6.02}=13.65
\end{aligned}
$$

Dc signals

Noise free resolution and effective resolution

NoiseFreeResolution $=\log _{2}\left(\frac{2^{\mathrm{N}}}{\text { PeaktoPeakNoiseinLSB }}\right)$
EffectiveResolution $=\log _{2}\left(\frac{2^{\mathrm{N}}}{\text { rmsNoiseinLSB }}\right)$

PeaktoPeakNoiseinLSB $\approx 6.6 \times$ rmsNoiseinLSB

EffectiveResolution \approx NoiseFreeResolution +2.7

Note: The maximum effective resolution is never greater than the ADC resolution. For example, a 24-bit converter cannot have an effective resolution greater than 24 bits.

Example

What is the noise-free resolution and effective resolution for a 24-bit converter assuming the peak-to-peak noise is 7 LSBs?

Answer
NoiseFreeResolution $=\log _{2}\left(\frac{2^{24}}{7}\right)=21.2$
EffectiveResolution $=\log _{2}\left(\frac{2^{24}}{\frac{7}{6.6}}\right)=23.9$

EffectiveResolution $=21.2+2.7=23.9$

Figure 58: Settling time for RC circuit-related to A/D converters

Table 33: Conversion accuracy achieved after a specified time

Settling time in time constants ($\mathbf{N}_{\text {TC }}$)	Accuracy in bits (N)	Settling time in time constants $\left(\mathbf{N}_{\text {TC }}\right)$	Accuracy in bits
1	1.44	10	14.43
2	2.89	11	15.87
3	4.33	12	17.31
4	5.77	13	18.76
5	7.21	14	20.20
6	8.66	15	21.64
7	10.10	16	23.08
8	11.54	17	24.53
9	12.98	18	25.97

$N=\log _{2}\left(\mathrm{e}^{-\mathrm{N}_{\mathrm{TC}}}\right)$

Where
$\mathrm{N}=$ the number of bits of accuracy the RC circuit has settled to after $\mathrm{N}_{T C}$ number of time constants.
$N_{T C}=$ the number of RC time constants

Note: For a FSR step. For single-ended input ADC with no PGA front end
FSR (Full Scale Range) $=\mathrm{V}_{\text {REF }}$

Table 34: Time required to settle to a specified conversion accuracy

Accuracy in bits $\mathbf{(N)}$	Settling time in time constants $\left(\mathbf{N}_{\text {TC }}\right)$	Accuracy in bits (\mathbf{N})	Settling time in time constants $\left(\mathbf{N}_{\text {TC }}\right)$
8	5.5	17	11.78
9	6.24	18	12.48
10	6.93	19	13.17
11	7.62	20	13.86
12	8.32	21	14.56
13	9.01	22	15.25
14	9.70	23	15.94
15	10.40	24	16.64
16	11.04	25	17.33

$$
\begin{equation*}
\mathrm{N}_{\mathrm{TC}}=\ln \left(2^{\mathrm{N}}\right) \tag{123}
\end{equation*}
$$

Where
$\mathrm{N}_{\mathrm{TC}}=$ the number of time constants required to achieve N bits of settling
$\mathrm{N}=$ the number of bits of accuracy

Note: For a FSR step. For single-ended input ADC with no PGA front end FSR (Full Scale Range) $=V_{\text {REF }}$

Notes

\qquad

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
Tl assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applicationsrelated information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet IS0/TS16949.

Products

Audio	
Amplifiers	amplifier.ticom
Data Converters	dataconverter.ti.com
DLP ${ }^{\circledR}$ Products	www.dlp.com
DSP	dsp.ticom
Clocks and Timers	www.ti.com/clocks
Interface	interface.ticom
Logic	Mogic.ti.com
Power Management	power.ticom
Microcontrollers	microcontroller.ti.com
RFID	www.ti-nfid. com
OMAPTM Applications	
Processors	Nww.ti.com/omap
Wireless Connectivity	Www.ti.com/wirelessconnectivity

Applications

Automotive and

Transportation
Communications and Telecom
Computers and Peripherals Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

WWw.īi.com/automotive
「www.tic.com/communications
-www.ti.com/computers
$=-1=-$
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industria"
www.ti.com/medical
WWw.ti.com/security
 Mww.ti.com/space-avionics-detense WWw.ti.com/vided

© 2014, 2015 Texas Instruments Incorporated
Printed in U.S.A. by (Printer, City, State)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

